Objective Type Questions

Q.1	Each questions has four possible answers. Choose the correct								
	answer and encircle it.								
1.	Third term of $(x + y)^4$ is:								
	(a)		(b)			$6x^2y^2$		(d)	$6x^3y$
2.	The number of terms in the expansion $(a + b)^{13}$ are:								
	(a)	12	(b)	13	(c)	14	(d)	15	

3. The value of $\binom{n}{r}$ is:

(a)
$$\frac{n!}{r!(n-r)!}$$
 (b) $\frac{n}{r(n-r)}$ (c) $\frac{n!}{r!(n-r)}$ (d) $\frac{n!}{(n-r)!}$

The second last term in the expansion of
$$(a + b)^7$$
 is:
(a) $7a^6b$ (b) $7ab^6$
(c) $7b^7$ (d) 15

_5.
$$\binom{6}{4}$$
 will have the value:

$$\underline{}_{6}$$
. $\binom{3}{0}$ will have the value:

In the expansion of $(a + b)^n$ the general term is: 7.

(a)
$$\binom{n}{r}a^rb^r$$
 (b) $\binom{n}{r}a^{n-r}b^r$

(c)
$$\binom{n}{r-1}a^{n-r+1}b^{r-1}$$
 (d) $\binom{n}{r}a^{n-r-1}b^{r-1}$

In the expansion of $(a + b)^n$ the term $\binom{n}{r}a^{n-r}b^r$ will be: 8.

(c)
$$(r+1)$$
th term (d) None of these

In the expansion of $(a + b)^n$ the rth term is: 9.

(a)
$${}^{n}C_{r}a^{r}b^{r}$$
 (b) ${}^{n}C_{r}a^{n-r}b^{r}$

 ${}^{\mathrm{n}}\mathrm{C_{r}}\mathrm{a}^{\mathrm{n-r+l}}\mathrm{b}^{\mathrm{r-l}}$ ${}^{\mathrm{n}}\mathrm{C_{r}a^{\mathrm{n-r-l}}b^{\mathrm{r-l}}}$ (d) (c) _10. In the expansion of $(1 + x)^n$ the co-efficient of 3^{rd} term is: $\begin{pmatrix} n \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} n \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} n \\ 2 \end{pmatrix}$ (d) $\begin{pmatrix} n \\ 3 \end{pmatrix}$ 11. In the expansion of $(a + b)^n$ the sum of the exponents of a and b in any term is: The middle term in the expansion of $(a+b)^6$ is:

(a) $15a^4b^2$ (b) $20a^3b^3$ (c) $15a^2b^4$ (d) $6ab^5$ _13. The value of $\binom{n}{n}$ is equal to: (a) Zero (b) 1 (c) 14. The expansion of $(1 + x)^{-1}$ is: (d) n -n (a) $1-x-x^2-x^3+...$ (b) $1-x+x^2-x^3+\dots$ (c) $1 - \frac{1}{1!}x - \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots$ (d) $1 - \frac{1}{1!}x + \frac{1}{2!}x^2 - \frac{1}{3!}x^3 + \dots$ 15. The expansion of $(1-x)^{-1}$ is: (a) $1+x+x^2+x^3+...$ (b) $1-x+x^2-x^3+\dots$ (c) $1 + \frac{1}{11}x - \frac{1}{21}x^2 + \frac{1}{21}x^3 + \dots$ (d) $1 - \frac{1}{1!}x + \frac{1}{2!}x^3 - \frac{1}{3!}x^3 + \dots$

_16. Binomial series for $(1 + x)^n$ is valid only when:

(a) $x \le 1$

(b) $x \le -1$

(c) |x| < 1

(d) None of these

__17. The value of $\binom{2n}{n}$ is:

(a) $\frac{2n}{n! \ n!}$ (b)

(c)
$$\frac{(2n)!}{n!}$$
 (d) $\frac{(2n)!}{n(n-1!)}$

__18. The middle term of $\left(\frac{x}{y} - \frac{y}{x}\right)^4$ is:

(a)
$$\frac{4x^2}{y^2}$$
 (b) 6 (c) 8 (d) $\frac{4x}{y}$

Answers

2. 7. 4. 1. 3. 5. b c a b 9. 6. b b 8. c 10. 11. 12. b 13. b 14. b 15. a a 16. 17. 18. 19. b d 20. b c b