EDUGATE Up to Date Solved Papers 49 Applied Mathematics-I (MATH-113) Paper B

EDOGATE OP TO Date Solved Fapers 4	a Abbii
DAE / IIA - 2020	8.
MATH - 113 APPLIED MATHEMATICS - I	
PAPER 'B' PART - A (OBJECTIVE)	
Time: 30 Minutes Marks: 15	
$\operatorname{Q.1:}$ Encircle the correct answer.	
1. The unit vector of $\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$ is:	9.
[a] $i - 2j - 2k$ [b] $\frac{1}{3}(i - 2j - 2k)$	
[c] $\frac{1}{\sqrt{3}}(i-2j-2k)$ [d] $\frac{1}{2}(i-2j-2k)$	
2. If $a = i + j + k$ and	10.
$ec{\mathbf{b}}=-\mathbf{i}-\mathbf{j}-\mathbf{mk}$ are perpendicular	
then ' ${f m}$ ' will be equal to:	
[a] 1 [b] -2 [c] ± 1 [d] ± 3	earn /
3. If $\hat{\mathbf{n}}$ is the unit vector in the	11.
direction of ${f ec a} imes {f ec b}$, then ${f \hat n}$ is:	
$[\mathbf{a}] \frac{\vec{\mathbf{a}} \times \vec{\mathbf{b}}}{ \vec{\mathbf{a}} \vec{\mathbf{b}} } [\mathbf{b}] \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{ \vec{\mathbf{a}} \vec{\mathbf{b}} }$	12.
$[c] \frac{ \vec{a} \times \vec{b} }{ \vec{a} \vec{b} \sin \theta} [d] \frac{\vec{a} \times \vec{b}}{ \vec{a} \times \vec{b} }$	
4. If the order of the matrix A is	13.
$\mathbf{p} \times \mathbf{q}$ and order of \mathbf{B} is $\mathbf{q} \times \mathbf{r}$,	13.
then order of AB will be:	/
$[a] p \times q \qquad [b] q \times p$	BAL
$[c] p \times r \qquad [d] r \times p$	
5. If two rows of a determinant are	
identical then its value is;	
[a] 1 [b] 0 [c] -1 [d] 2	15.
6. The value of 'm' for which matrix $\lceil \mathbf{k} \mid 6 \rceil$	
$\begin{bmatrix} \mathbf{k} & 6 \\ 4 & 3 \end{bmatrix}$ is singular.	
[a] −8 [b] 24 [c] 8 [d] −24	
7. In an equilateral triangle, each	1
angle is:	6
[a] 30° [b] 45° [c] 60° [d] None of these	11
	<u>.</u>

A	pplie	ed M	athe	emat	ics-l	(MA	TH-	113)	Pap	<u>er B</u>	
	8.	ľ	If a = 4cm, b = 2cm are adjacent								
			sides of triangle and $\theta {=}30^\circ$ is the								
			included angle then area is: [a] 2 sq.cm [b] 4 sq.cm								
			174 mars	878		- <u>R</u> 8		1000			
1	-			sq.c] 12	· •		12	
1	9.								ing '		
						ingle		es di	ηdθ	12	
						_			•		
		Į,	aj a	b cos	9θ	[b]	$\frac{1-\epsilon}{2}$	lbsi	nθ		
		[•	c] al	bsin	θ	[d]	as	inθ			
100	10.	A	Irea	of a	regu	ılar H	iexa	gon	of si	de	
			a'is				_		_	- 10	
-	-	- B	a1 <u>√</u>	r _ [b]	2	² [c]	<u>3√3</u>	a² íd	$\left \frac{3\sqrt{3}}{2}\right $	$\frac{3}{-a^2}$	
a.	n	1	4		√ 3`	~ [•]	4	a la	2	ŭ	
	11.	24	4 $\sqrt{3}$ 4 2 Area of circle with diameter 'd' is:								
			_1√	гы	2	2 ² [c]	<u>3√3</u>	2 ² [d] <u>3√3</u> 2	3 2	
			4	21	<u>√</u> 3 °	i [c]	4	a [u	2	-a	
P	12.) 1	fvol	ume	of a	cub	e is 2	27, t	hen	side	
_			fcu	be is	:						
			[a] $\frac{\pi}{2}$ r ² [b] $\frac{\pi}{2}$ d ² [c] $\frac{\pi}{4}$ d ² [d] None								
	13.		77	1	1.12						
	13.	1		e a sport de la		e are ler is		rigi			
	/	6-65		1.00				rh [d] 2	πr^2	
1	14.								is 'A'		ł
- 10									pyra		
		Ĕ	al 1	Ah	[Ы]	1 _ A h	[c].	1 }	1 [d]	Ah	
		Ľ	3		[~]	2^{111}	. [~]	6	r [oj		
1000	15.		Volume of cone of radius of base 3cm and height 12cm is;								
								10.000	1.012		
[a] 108π cu.cm [b] 36π cu.cm [c] 12π cu.cm [d] 54π cu.cm											
	Answer Key										
	1	b	2	b	3	d	4	6	5	b	ŝ
	6	c	2	b	8	d d	4 9	c b	10	e v	N.
	12326	25.8		1.000	1000	2082		33535	1239633	0.525	i

1	b	2	b	3	d	4	с	5	b
6	с	7	b	8	d	9	b	10	с
11	с	12	a	13	с	14	a	15	b

EDUGATE Up to Date Solved Papers 50 Applied Mathematics-I (MATH-113) Paper B DAE/IIA - 2020 5. Find the area of trapezoid whose parallel sides are 20cm and 30cm MATH-113 APPLIEDMATHEMATICS-I and perpendicular distance PAPER 'B' PART - B(SUBJECTIVE) 20cm between them is 4cm./ Time:2:30Hrs Marks:60 h=4cm Sol. Area of Trapezoid Section - I 30cm = $\frac{\text{Sum of parallel sides}}{\text{Sum of parallel sides}} \times \text{height}$ 1. Define isosceles triangle. $=\frac{20+30}{2}\times4=\boxed{100\,\mathrm{sq.cm}}$ Sol. A triangle whose two sides are equal and third side is different is called isosceles triangle. 6. Define inscribed polygon. 2. Write the area of an equilateral Sol. If a circle passes through the corners of a polygon, then this triangle with side 'a'. polygon is called inscribed polygon. Sol. Area of equilateral triangle 7. The perimeter of a regular To Learn n $=\left|\frac{\sqrt{3}}{4}a^2$ sq.unit hexagon is 12cm, find its area. Sol. Perimeter of hexagon = 12 cm 6a = 123. The area of a rectangle is 20 sq.cm $a = \frac{12}{6} = 2$ cm and one of its side is 4cm long. Find its breadth and the perimeter of $Area = \frac{na^2}{4} \cot\left(\frac{180^\circ}{n}\right)$ the rectangle. Sol. As, Area of rectangle = 20 cm^2 Length \times Breadth = 20 $A = \frac{6(2)^2}{4} \cot\left(\frac{180^\circ}{6}\right)$ $4 \times \text{Breadth} = 20$ Breadth = $\frac{20}{4}$ = 5 cm $A = 6 \cot 30^{\circ}$ $A = \frac{6}{\tan 30^\circ} = 10.39 \, \text{sq.cm}$ Perimeter = 2(a+b)What is the area and circumference 8. $= 2(4+5) = 2(9) = 18 \,\mathrm{cm}$ of circle of radius 'r'. 4. The perimeter of a Rhombus is Area of Circle = $A = \pi r^2 \overline{sq.unit}$ Sol. 140cm and one of the opposite Circumference of Circle = $C = 2\pi r unit$ angle is 30°. Find its area. Let, length of one side of a Rhombus = aSol. 9. Write the formula of Area of the As. Perimeter of Rhombus = 140 cmminor segment when angle is ' θ ' 4a = 140and radius 'r' are given. $a = \frac{140}{4} \Rightarrow a = 35 \text{ cm}$ Area of minor Segment Sol. $=\frac{1}{2}r^{2}(\theta-\sin\theta)$ Area of Rhumbus = $a^2 \sin \theta$ $=(35)^{2}\sin 30^{\circ}=612.50\,\mathrm{sq.cm}$ 10. The base of a right prism is an

Available online @ <u>https://mathbaba.com</u>

equilateral triangle with a side of

EDUGATE Up to Date Solved Papers 51 Applied Mathematics-I (MATH-113) Paper B

4cm and its height is 25cm, find its As, $d = 3m \Rightarrow r = \frac{d}{2} = \frac{3}{2} = 1.5m$ volume. Here: a = 4cm, h = 25cm & V = ?Sol. Volume of well = $V = \pi r^2 h$ Area of base (equilateral triangle) $=\pi(1.5)^2(24)=169.646m^3$ $=\frac{\sqrt{3}}{4}a^{2}=\frac{\sqrt{3}}{4}(4)^{2}=6.92cm^{2}$ Total cost of digging the well = Volume × Rate Volume = Area of base × height $= 169.646 \times 10 =$ Rs.1696.46 Volume = 6.92×25 14. Find the diameter of the cylinder if Volume = $173.2 \,\mathrm{cm}^3$ its volume is 704cm³ and height is 14cm. 11. The volume of the cube is 95 **Sol.**Here: $d = ?, V = 704 \text{ cm}^3 \& h = 14 \text{ cm}$ cu.cm. Find the surface area and the edge of the cube. As, Volume of Cylinder = 704 cm³ To Learn Maine 405Y Way Let 'a' be edge of cube Sol. $\pi r^2 h = 704$ As, volume = 95 $r^2 = \frac{704}{\pi h}$ $a^{3} = 95$ $r^{2} = 16$ $(a^3)^{\frac{1}{3}} = (95)^{\frac{1}{3}}$ $r^2 = \frac{704}{\pi(14)}$ a = 4.56Edge of cube = $a = 4.56 \,\mathrm{cm}$ $\Rightarrow r^2 = 16$ $\Rightarrow \sqrt{r^2} = \sqrt{16}$ Surface area of cube = $6a^2$ S.A. = $6(4.56)^2 = 124.92 \text{ cm}^2$ Diameter = d = 2r = 2(4) = 8 cm12. A rectangular cuboid 9cm long and 15. Find the volume of a pentagonal 7cm wide given that the volume of the cuboid is 315cm³. Find the based pyramid whose area of base height of the cuboid. is 15 sq. cm and height is 15cm. Here V=? Area of base = 15 cm^2 Sol. Sol. Let, $\ell = 9$ cm, b = 7cm, V = 315 cm³ height = 15cm& & h = ? Volume = $\frac{1}{3}$ × area of base × height As, Volume of cuboid = 315 cm³ $\ell b h = 315$ $V = \frac{1}{3} \times 15 \times 15$ $9 \times 7 \times h = 315$ $V = 75 \text{ cm}^3$ $h = \frac{315}{63}$ 16. Find the volume of the largest cone $h = 5 \, cm$ that can be cut out of a cube whose edge is 3cm. 13. Find the cost of digging a well 3m Sol. Let 'a' = edge of the cube = 3cm in diameter and 24m in depth at h = 3cmThen & the rate of Rs.10 per cu. m. Sol. Here: d = 3m, h = 24m

EDUGATE Up to Date Solved Papers 52 Applied Mathematics-I (MATH-113) Paper B

$$\mathbf{r} = \frac{a}{2} = \frac{3}{2} = 1.5 \text{ cm}$$

$$\mathbf{V} = \frac{1}{3} \pi r^{3} h$$

$$\mathbf{V} =$$

EDUGATE Up to Date Solved Papers 53 Applied Mathematics-I (MATH-113) Paper B

	CHILL OF to Date Conved 1 apers 0	- Applied	mathematics (mittin 115) ruper b
	$ \mathbf{b} - 1 \mathbf{a} $		-60 + 5k + 45 = 0
Sol.	$L.H.S. = \begin{vmatrix} a & b & 0 \end{vmatrix}$		5k - 15 = 0
501.			5k = 15
	1 a b		
	b 0 $ a 0 $ $ a b $		$k = \frac{15}{10}$
	$= b \begin{vmatrix} b & 0 \\ a & b \end{vmatrix} - (-1) \begin{vmatrix} a & 0 \\ 1 & b \end{vmatrix} + a \begin{vmatrix} a & b \\ 1 & a \end{vmatrix}$		$k = \frac{15}{5}$
			k=3
	$= b(b^{2}-0)+1(ab-0)+a(a^{2}-b)$	2. 	
	$=b^3-0+ab-0+a^3-ab$	27.	Find A^{-1} if $A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$
	$= b^3 + a^3 = R.H.S.$ Proved.		
25.	Find x and y if	Sol.	$\mathbf{A} = \begin{vmatrix} 1 & 3 \\ 2 & -1 \end{vmatrix}$
	$\begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x+3 & 1 \end{bmatrix}$		1 2
	$\begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix}$ $\begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix}$ Comparing corresponding elements of both matrices :		$ \mathbf{A} = \begin{vmatrix} 1 & 3 \\ 2 & -1 \end{vmatrix}$
Sol.	$\begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x+3 & 1 \end{bmatrix}$	Para	A = -1 - 6 = -7
301.	$\begin{vmatrix} -3 & 2 \end{vmatrix}^{-} \begin{vmatrix} -3 & 3y - 4 \end{vmatrix}$	M.	[1 2]
	Comparing corresponding elements of		Adj A = $\begin{vmatrix} -1 & -5 \\ 0 & -1 \end{vmatrix}$
	both matrices :		
			$\operatorname{Adj}(A)$
	x + 3 = 2 $3y - 4 = 23y = 2 + 4$		$\mathbf{A}^{-1} = \frac{\mathrm{Adj}(\mathbf{A})}{ \mathbf{A} }$
	x + 3 = 2 $3y = 2 + 4$		
	$\mathbf{x} = 2 - 3 \mathbf{3y} = 6$		
	$\mathbf{x} = -1$ 6		$A^{-1} = \frac{\begin{bmatrix} -1 & -3 \\ -2 & 1 \end{bmatrix}}{-7}$
	$y = \frac{1}{3}$		-7
	$ \begin{array}{c c} \hline x = -1 \\ \hline y = \frac{6}{3} \\ \hline y = 2 \end{array} $		
<u>.</u>		1	$\mathbf{A}^{-1} = \begin{vmatrix} \frac{1}{7} & \frac{3}{7} \\ \frac{2}{7} & -\frac{1}{7} \end{vmatrix}$
	$\begin{bmatrix} 4 & k & 3 \end{bmatrix}$	DA C	$A^{-1} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$
26.	Find 'k' if $A = \begin{bmatrix} 7 & 3 & 6 \end{bmatrix}$ is a	BIALO	$\left\ \frac{1}{7} - \frac{1}{7}\right\ $
	$2 \ 3 \ 1$		
e al	singular matrix.		Section - II
Sol.	As, A is singular so $ A = 0$	Note	: Attemp any three (3) questions $3 \times 8 = 24$
	$\begin{array}{cccc} 4 & k & 3 \\ 7 & 3 & 6 \\ 2 & 3 & 1 \end{array} = 0$	Q.2.(a) From the point within an
	$7 \ 3 \ 6 = 0$		equilateral triangle perpendicular
	2 3 1		are drawn to the three sides are
			6, 7 and 8cm respectively. Find the
}	$4\begin{vmatrix} 3 & 6 \\ 3 & 1 \end{vmatrix} - k\begin{vmatrix} 7 & 6 \\ 2 & 1 \end{vmatrix} + 3\begin{vmatrix} 7 & 3 \\ 2 & 3 \end{vmatrix} = 0$		REFER REPORTS REPORTS CARACTERISTICS CONTRACT
			area of triangle.
	4(3-18)-k(7-12)+3(21-6)=0	Sol.	See $\operatorname{Q.2}$ of Ex # 10 (Page # 462)
	4(-15) - k(-5) + 3(15) = 0		

EDUGATE Up to Date Solved Papers 54 Applied Mathematics-I (MATH-113) Paper B

(b)	Regular polygons of 15 sides are	Q.5.(a	a) Given the vectors
	inscribed in and circumscribed		$\vec{\mathbf{a}} = 3\mathbf{\underline{i}} - 2\mathbf{j} + 4\mathbf{\underline{k}}$ and
	about a circle whose radius is		$\vec{\mathbf{b}} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ find the
	12cm. Show that the difference of		1997 7 17 17 19 19 19 19 19 19 19
	their areas is nearly 20 square cm.		magnitude and direction cosines of
Sol.	See $Q.4$ of $Ex # 12 (Page # 487)$		$3\vec{a} - 2\vec{b}.$
	л на 000-	Sol.	See $Q.9(ii)$ of $Ex\#8.1\bigl(\mbox{Page}\#374\bigr)$
Q.3.(a	a) Following ordinates of equal		
	intervals are drawn in a plot of	(b)	Find the Sine of the angle between
	base 1200 meters. Find the area by	01002 100034	the vectors: $\vec{\mathbf{a}} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and
	Simpson's rule if these ordinates		=
	are 50, 60, 80, 90, 30, 50, 60, 80,		$\vec{\mathbf{b}} = 2\mathbf{\underline{i}} + 3\mathbf{\underline{j}} - \mathbf{\underline{k}}$
	70, 90, 100, 120, 130meters.	Sol.	See $Q.19(i)$ of $Ex\#8.2 \bigl({\sf Page}\#388 \bigr)$
Sol.	See Q.7 of $\operatorname{Ex} \# 14$ (Page $\# 510$)	Carn M	
	A	Q.6.	Use Cramer's rule to solve the
(b)	A 10cm cube of cast iron is melted	ads Statistic	following system of equation
	and cast into a hexagonal prism		$\mathbf{x} - 2\mathbf{y} + \mathbf{z} = -1$
	with a height of 12cm. Find the		3x + y - 2z = 4
	side of the base of prism.		$\mathbf{v} - \mathbf{z} = 1$
Sol.	See Q.3 of $Ex # 15$ (Page $# 518$)	Sol.	See Q.8(iii) of Ex # 9.2 (Page # 429)
Q.4.(a	a) Find the whole surface of a		****
	pyramid whose base is an	- 60	
	equilateral triangle of side 3m and	BAS	
	its slant height is 6m.		
Sol.	See Q.7 of $\operatorname{Ex} \# 17[A](Page \ \# 548)$		
(b)	Find the cost of canvas, at the		
	rate of Rs.5 per square meter,		
	required to make a tent in the		
	form of a frustum of a square		
	pyramid. The sides of the base and		
	top are 6m and 4m respectively		
	and the height is 8m, taking no		
	account of waste.		
Sol.	See Q.5 of $Ex # 17[B](Page # 556)$		