DAE/IIA-2018/08 SECOND YEAR

(Common with Bio Medical, Computer, Food
Computer Information, Electrical, Electronics,
Food Processing & Preservation, Instrument, Critical Health Care and
Telecommunication Technologies.)

MATH-233 APPLIED MATHEMATICS – II

PAPER - B (PART - B)

Time: 2:30 Hours Marks: 60

SECTION - I

$\mathbf{Q.1:}$ Write short answer to any Eighteen (18) of the questions: -

 $18 \times 2 = 36$

1.	Find $\int (2x+9)^{-5/2} dx$	2.	Find $\int \frac{1}{\sqrt[3]{(3x+4)^2}} dx$
3.	Find $\int \left(x + \frac{1}{x}\right)^2 dx$	4.	Find $\int \left(\frac{1}{t^3} + \frac{1}{t^2} - 2\right) dt$
5.	Find $\int \left(\frac{-2x}{\sqrt{4-x^2}}\right) dx$	6.	Find $\int \left(\frac{x^2+1}{x+1}\right) dx$
7.	Find $\int \left(1+\frac{3}{x^2}\right)^2 dx$	8. earn	Evaluate $\int \frac{dx}{x(1+\ell nx)}$
9.	Evaluate $\int (x \cos x) dx$	10.	Evaluate $\int (x \sec^2 x) dx$
11.	Evaluate $\int (\ell \mathbf{n} \mathbf{x}) d\mathbf{x}$	12.	Evaluate $\int (x \ell nx) dx$
13.	Find $\int (x.\sin x) dx$	14.	Evaluate $\int_0^3 \sqrt[3]{(3x-1)^2} dx$
15.	Evaluate $\int_1^3 \frac{1}{x+1} dx$	16.	Evaluate $\int_{\pi/6}^{\pi/3} (\sin 2x) dx$
17.	Evaluate $\int_{\pi/6}^{\pi/3} \!\! \left(\cos e c^2 x \right) \! dx$	18.	Define differential equation and give example.
19.	Define the Order of differential equation with example.	20.	Define the Degree of differential equation with example.
21.	What is general solution of differential equation?	22.	What the particular solution of differential equation?
23.	What is Laplace transformation of $\sin 7t$?	24.	If $L\left\{e^{at}\right\}=\frac{1}{s-a}$ then what will be the Laplace transformation of e^{-4t} .
25.	What is Laplace transformation of $\cos 6t$?	26.	Define inverse Laplace transformation.
27.	What is the most important method to find the inverse Laplace transformation of function?		

SECTION - II

Note: Attempt any three (03) questions.

 $3 \times 8 = 24$

- **Q.2.** [a] Evaluate $\int \left(\frac{\sin\sqrt{x}}{\sqrt{x}\cos\sqrt{x}}\right) dx$
 - **[b]** Evaluate $\int (\sin^3 x \cos x) dx$
- **Q.3.** [a] Evaluate $\int (\cot^3 2x \csc^3 2x) dx$
 - **[b]** Evaluate $\int (\sin^{-1} x) dx$.
- **Q.4.** [a] Evaluate $\int_0^a \frac{dx}{\sqrt{x+a} + \sqrt{x}}$
 - **[b]** Show that area of a circle of radius r is πr^2 .
- **Q.5.** [a] Find the general solution of equation ydx xdy = x(dy ydx)
 - [b] Find the particular solution of: $dy = x \left(2ydx xdy \right)$ subject to the conditions $x=1,\ y=4$.
- Q.6. Expand the Fourier Series; $f(x) = \begin{bmatrix} 1, & 0 \le x \le \pi \\ 2, & \pi \le x \le 2\pi \end{bmatrix}$ Period 2π .
