EDUGATE Up to Date Solved Papers 18 Applied Mathematics-I (MATH-123) Paper A												
DAE/IIA-2017			8.	The terminal side of angle θ lies in								
MATH-123 APPLIED MATHEMATICS-I			0050	4 th quadrant, sign of sin θ will be:								
PAPER 'A' PART - A(OBJECTIVE)				[[a] Positive [b] Negative							
Tim	e:30Minutes	Marks:15		[c] Both +ve and –ve								
Q.1 :	Encircle th	e correct answer.]	d] N	one	ofth	iese				
1.	15° is equal t		9.	ľ	fā	and	b aı	re co	olline	ar v	ecto	rs
8		_			hen:							
	[a] $\frac{\pi}{6}$ rad	[b]					= 0					
	., π ι	τ., π		Ĩ	c] a	– b =	= 0	[d] a -	⊦ <u>b</u> =	0	
	[c] $\frac{\pi}{12}$ rad	TO	10.	т	he c	ross	pro	duct	oft	wow	/ecto	orā
2.	$\sin\left(90^{\circ}- heta ight)$ is equal to:			а	nd Ī	j ar	e:					
	[a] -sinθ	[b] sinθ]	a] a	bsir	ıθ	[b] ab	cos	θ	
	[c] -cosθ]	c] al	bsir	ıθî	[d] ab	cos	θî	
3.	$\sin(lpha+eta)$ is	equal to:	earn n	1	he s	tand	lard	forn	n of a	a qu	adra	tic
	[a] sin $\alpha \cos \beta$	+ $\cos \alpha \sin \beta$		1012	qua							
	[b] cos α cos β	3 - sin α sin β			121000		bx :	0.000	2025 - 2025	$\mathbf{x}^2 =$	= 0	
	[c] sin $\alpha \cos \beta$	- $\cos \alpha \sin \beta$			1 m	100	bx-		0			
	[d] cos α cos β	3 + sin α sin β			d] a	$x^{2} +$	• c =	0				
4.	If in a triangle	ABC, a = 1, b = 2, and	12.) i	f dis	crim	inan	t of	an e	quat	tion i	is
	C = 60º then c				S 1		n the				e:	
	[a] √3 [b] 2	[c] 1 [d] 3		1.2	1100		hary					
5.	Unit vector of	$\underline{i} + \underline{j} + \underline{k}$ is:	1000		e=1	• U		175. 1	1971		nal	
			13.		2	5 (2) S (2) (2) S (uct c			f		
	[a] <u>i</u> + <u>j</u> + <u>k</u>	[b] $\frac{1}{3} \left(\underline{i} + \underline{j} + \underline{k} \right)$		100			-5					
	. 1 7	N America	E.C.	O	a] –	5 [ɔ] $\frac{5}{2}$	[c	$1\frac{2}{2}$	[d	$1 - \frac{2}{5}$	5
	[c] $\frac{1}{\sqrt{3}}(\underline{i} + \underline{j} +$		BAS	1		4	4		0		0	
	[d] $\frac{1}{2}(\underline{i} + \underline{j} +)$	<u>k</u>)	14.	T	he v	alue	e of i	s (n n	e e	qual	to:	
6.	Z The number o	f terms in the]	a] 0	[ŀ) 1	[C] n	[d]] –n	
0.	expansion (a		15.	Т	hird	terr	n of	(x-	+ y) [*]	is:		
		[b] 13		I	a] 4	x^2y^2	3	[b] 4x	зy		
	[a] 12 [c] 14	[d] 15		[c] 6:	x^2y^2		[d] 6x	³ y		
7.				-			nsw					
		-0	1	с	2		3	а	4	a	5	c
	[a] 90°	$[b]\left(\frac{90}{\pi}\right)^{\circ}$	6	c	7	d	8	b	9	a	10	c
			11	c	12	u c	13	a	14	a b	15	a
	[c] 180°	$[d] \left(\frac{180}{\pi}\right)^{\circ}$		3725	Jakal ta	2005	***	27.95		100000	acure, j	••
		(π)	l,			9999977776 1	00000000		10121012700			

Available online @ <u>https://mathbaba.com</u>

EDUGATE Up to Date Solved Papers 19 Applied Mathematics-I (MATH-123) Paper A

$$\begin{array}{c} \textbf{DAE}/HA-2017\\ \textbf{MATH-123 APPLIED MATHEMATICS-I}\\ \textbf{PAPER 'A' PART-B(SUBJECTIVE)}\\ \textbf{Time: 2: 30Hrs}\\ \textbf{Section -1}\\ \textbf{Q.1. Write short answers to any}\\ \textbf{Eighteen (18) questions.}\\ \textbf{1. Solve the equation $x^2 - 3x = 2x - 6$\\ by factorization.\\ \textbf{Sol. $x^2 - 3x = 2x - 6$\\ x(x - 3) - 2(x - 3) = 0$\\ (x - 3)(x - 2) = 0\\ \textbf{Either}\\ x - 3 = 0\\ x = 3\\ SS = \{2, 3\}\\ \textbf{2. Solve the quadratic equation:}\\ x^2 + 7x + 12 = 0\\ \textbf{Sol. $x^2 + 7x + 12 = 0$\\ x + 4x + 3x + 12 = 0$\\ x(x + 4) + 3(x + 4) = 0$\\ (x + 4)(x + 3) = 0\\ \textbf{Either}\\ x + 4 = -4\\ x = -4\\ s = -4\\ \textbf{Sol. $x^2 + 7x + 12 = 0$\\ x = -4\\ s = -4\\ s = -4\\ \textbf{Sol. $x^2 + 7x + 12 = 0$\\ x = -4\\ s = -4\\ \textbf{Sol. $x^2 + 7x + 12 = 0$\\ x = -4\\ x = -3\\ SS. = \{-3, -4\}\\ \textbf{3. Find the value of 'k', given that the sum of roots of the equation $x^2 + 3x + 3 = 0$\\ x = -4\\ x = -3\\ SS. = \{-3, -4\}\\ \textbf{3. Find the value of 'k', given that the sum of roots of the equation $x^2 + 4x + 5 = 0$ will be equal to the product of its coots. $Sol. Here: a = 3, b = k, c = 5\\ \textbf{A. From the quadratic equation $x^2 - 3x = 2x - 6$\\ x = -3 = 0\\ x = -2\\ x = -3\\ x = -3\\ x = -4\\ x = -3\\ SS. = \{-3, -4\}\\ \textbf{3. Find the value of 'k', given that the sum of roots of the equation $3x^2 + kx + 5 = 0$ will be equal to the product of its coots. $Sol. Here: a = 3, b = k, c = 5\\ \textbf{A. From the quadratic equation:}\\ \frac{-k}{a} = \frac{c}{a} = \frac{-9}{a} = \frac{-9}{a}$$

Available online @ https://mathbaba.com

EDUGATE Up to Date Solved Papers 20 Applied Mathematics-I (MATH-123) Paper A

Here ia = 2x, $b = -\frac{x^2}{4}$, n = 7 & r = 4Sol. $T_{r+1} = \binom{n}{r} a^{n-r} b^r$ $T_{4+1} = \begin{pmatrix} 7 \\ 4 \end{pmatrix} (2x)^{7-4} \left(-\frac{x^2}{4} \right)^4$ $\mathbf{T}_{5} = (35)(8\mathbf{x}^{3})\left(\frac{\mathbf{x}^{8}}{256}\right) \Rightarrow \left|\mathbf{T}_{5} = \frac{35}{32}\mathbf{x}^{11}\right|$ 8. Expand $(1+x)^{-3}$ up to three terms. $(1+x)^{-3}$ Sol. Put b = x & n = -3 in Binomial series Formula, $(1+b)^n = 1 + nb + \frac{n(n-1)}{2!}b^2 + \dots$ we have: $=1+(-3)(x)+\frac{-3(-3-1)}{3}(x)^{2}+...$ $=1-3x+\frac{-3(-4)}{2}x^{2}+..$ $= |1 - 3x + 6x^2 + \cdots|$ Compute $ig(1.02ig)^4$ to two decimal 9. places by use of Binomial formula. $(1.02)^4 = (1+0.02)^4$ Sol. $= \binom{4}{0} (1)^{4} (0.02)^{0} + \binom{4}{1} (1)^{3} (0.02)^{1} + \binom{4}{2} (1)^{2} (0.02)^{2} + \dots$ =(1)(1)(1)+4(1)(0.02)+6(1)(0.0004)+...=1+0.08+0.0024+...=1.0824=1.0810. Which term is the middle term/terms in the Binomial expansion of $(a + b)^n$. (i) When 'n' is even. (ii) When 'n' is odd. Sol. **(i)** When n is even Then, Middle term = $\left(\frac{n+2}{2}\right)^{th}$ term

Sol.

(ii) When n is odd

Then, there are two middle terms: Middle term = $\left(\frac{n+1}{2}\right)^{\text{th}} + \left(\frac{n+3}{2}\right)^{\text{th}}$ terms. 11. Find the missing elements 2, r, 0, when 2 - 8.4m, 8 - 2.8 rad. Sol. We know that: $\ell = r\theta$ \Rightarrow r = $\frac{\ell}{\theta} = \frac{8.4}{2.8} = 3m$ 12. **Evaluate:** cos 30° cos 60° - sin 30° sin 60° $\cos 30^\circ \cos 60^\circ - \sin 30^\circ \sin 60^\circ$ Sol. $\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = \boxed{0}$ $=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$ 13. Prove that: $1-2\sin^2\theta=2\cos^2\theta-1$ $LHS = 1 - 2\sin^2\theta$ Sol. $=1-2(1-\cos^2\theta)$ $=1-2+2\cos^2\theta$ $= 2\cos^2\theta - 1 = R.H.S.$ Proved. 14. Show that: $\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$ L.H.S. = $\sin(\alpha + \beta) + \sin(\alpha - \beta)$ Sol. $= \sin \alpha \cos \beta + \cos \alpha \sin \beta + \sin \alpha \cos \beta - \cos \alpha \sin \beta$ $= 2 \sin \alpha \cos \beta = R.H.S.$ Proved. Find the value of $\sin 105^\circ$, without 15. using calculator. $\sin 105^\circ = \sin (45^\circ + 60^\circ)$ Sol.

Available online @ <u>https://mathbaba.com</u>

EDUGATE Up to Date Solved Papers 21 Applied Mathematics-I (MATH-123) Paper A

	Volizza op to Date Contral apoito z	т лирисч	muchemudes rimstin 123/14pers
	$=\sin 45^\circ \cos 60^\circ + \cos 45^\circ \sin 60^\circ$	Sol.	By using law of sines:
	$= \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{2}\right) + \left(\frac{1}{\sqrt{2}}\right) \left(\frac{\sqrt{3}}{2}\right)$		$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$
	$=\frac{1}{2\sqrt{2}} + \frac{\sqrt{3}}{2\sqrt{2}} = \boxed{\frac{1+\sqrt{3}}{2\sqrt{2}}}$		We take: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$ $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b}$
16.	Express $\sin 5\theta - \sin \theta$ as product.		
Sol.	$\sin 5\theta - \sin \theta$		$\sin \alpha = \frac{a \sin \beta}{b}$
	$= 2\cos\left(\frac{5\theta + \theta}{2}\right)\sin\left(\frac{5\theta - \theta}{2}\right)$		$\sin \alpha = \frac{3 \sin 85^{\circ}}{7}$
	$=2\cos\left(\frac{6\theta}{2}\right)\sin\left(\frac{4\theta}{2}\right)$		$\sin \alpha = 0.4269$
	$-\frac{2}{2}$ and $\frac{2}{2}$ and $\frac{2}{2}$		$\alpha = \sin^{-1} \left(0.4269 \right)$ $\boxed{\alpha = 25^{\circ} 16'}$
17.	$= [2\cos 3\theta \sin 2\theta]$ Prove that:	earn M	2:
	$\cos^4\theta - \sin^4\theta = \frac{1}{\sec 2\theta}$	20. Sol.	Write the law of Cosines. In any triangle ABC, with usual
Sol.	L.H.S. = $\cos^4 \theta - \sin^4 \theta$		notations.
iandes theres	$= \left(\cos^2\theta\right)^2 - \left(\sin^2\theta\right)^2$		i. $a^2 = b^2 + c^2 - 2bc \cos \alpha$ ii. $b^2 = c^2 + a^2 - 2ca \cos \beta$
	$=(\cos^2\theta-\sin^2\theta)(\cos^2\theta+\sin^2\theta)$		iii. $c^2 = a^2 + b^2 - 2ab\cos\gamma$
	$= (\cos^2 \theta - \sin^2 \theta)(1)$	21.	In any triangle ABC if b = 5, c = 8,
	$=\cos^2\theta - \sin^2\theta$		$\propto = 60^{\circ}$, Find 'a'.
	$=\cos 2\theta = \frac{1}{\sec 2\theta} = R.H.S.$ Proved.	B Sol.	By using law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$
	sec 20		
18.	Prove that: $\sin(180^\circ - \theta) = \sin \theta$		$a^{2} = (5)^{2} + (8)^{2} - 2(5)(8)\cos 60^{\circ}$
Sol.	$L.H.S. = sin \left(180^\circ - \theta \right)$		$a^2 = 25 + 64 - 40$ $a^2 = 49$
	$=\sin 180^\circ\cos \theta - \cos 180^\circ\sin \theta$		$\sqrt{a^2} = \sqrt{49}$
	$=(0)\cos\theta - (-1)\sin\theta$		a = 7
	$=0+\sin\theta$	-	
	$=\sin\theta = R.H.S.$ Proved.	22.	The shadow of a building is 220
			meters when the measure of the
19.	In any triangle ABC if		angle of elevation of the sun is 35°.

In any triangle ABC if
 a = 3, b = 7, β = 85^o find α.

Available online @ https://mathbaba.com

Find the height of the building.

EDUGATE Up to Date Solved Papers 2	2 Applied Mathematics-I (MATH-123) Paper A						
Sol. Let height of building = $h = ?$	As given vectors are perpendicular. \vec{r}						
$\tan 35^\circ = \frac{h}{220}$	So, $\vec{a}.\vec{b} = 0$						
220m	$\Rightarrow \qquad (2i - j + 2k) . (3i + 2\lambda j) = 0$						
$h = 220 \tan 35^\circ = 154.05 \mathrm{m}$	$\Rightarrow \qquad (2)(3) + (-1)(2\lambda) + (2)(0) = 0$						
23. Show that the vectors	$\Rightarrow 6-2\lambda+0=0$						
$4i-6j+9k \& -6i+9j-\frac{27}{2}k$	$\Rightarrow -2\lambda = -6$						
are parallel.	$\Rightarrow \qquad \lambda = \frac{-6}{-2}$						
3 .	\Rightarrow $\lambda = 3$						
Sol	26. Given the vectors $\vec{a} = 3i + j - k$						
Let, $\vec{a} = 4i - 6j + 9k \& \vec{b} = -6i + 9j - \frac{27}{2}k$							
1 1							
$\vec{a} \times \vec{b} = \begin{vmatrix} 1 & j & k \\ 4 & -6 & 9 \end{vmatrix}$	magnitude of $3\vec{a} - \vec{b}$.						
$\vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ 4 & -6 & 9 \\ -6 & 9 & -27/2 \end{vmatrix}$							
/ 01/	$3\vec{a} - \vec{b} = 9i + 3j - 3k - 2i - j + k$						
-6 9 $ 4 9 $ $ 4-6 $	$3\vec{a} - \vec{b} = 7i + 2j - 2k$						
$= i \begin{vmatrix} -6 & 9 \\ 9 & -27/2 \end{vmatrix} - j \begin{vmatrix} 4 & 9 \\ -6 & -27/2 \end{vmatrix} + k \begin{vmatrix} 4 & -6 \\ -6 & 9 \end{vmatrix}$	$ 3\vec{a} - \vec{b} = \sqrt{(7)^2 + (2)^2 + (-2)^2}$						
$\begin{pmatrix} (27) \end{pmatrix} \begin{pmatrix} (27) \end{pmatrix}$	$=\sqrt{49+4+4}=\sqrt{57}$						
$=i\left(-6\left(-\frac{27}{2}\right)-81\right)-j\left(4\left(-\frac{27}{2}\right)-(-54)\right)+k(36-36)$	27. Given vectors $\vec{a} = 3i - 2j + 4k$,						
=i(81-81)-j(-54+54)+k(36-36)	$\vec{b} = 2i + j + 3k$. Find the magnitude and Direction Cosines a $\vec{a} - \vec{b}$.						
=i(0)-j(0)+k(0)=0							
Hence $\vec{a} \ll \vec{b}$ are parallel.							
	Sol. Let, $\vec{v} = \vec{a} - \vec{b}$ $\vec{v} = (2i - 2i + 4k) - (2i + i + 2k)$						
24. Find $\vec{a}.\vec{b}$ if	$\vec{\mathbf{v}} = (3\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}) - (2\mathbf{i} + \mathbf{j} + 3\mathbf{k})$ $\vec{\mathbf{v}} = 3\mathbf{i} - 2\mathbf{j} + 4\mathbf{k} - 2\mathbf{i} - \mathbf{j} - 3\mathbf{k}$						
$\vec{\mathbf{a}} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k} \& \vec{\mathbf{b}} = \mathbf{i} - \mathbf{j} + \mathbf{k}$	$\vec{v} = 5\mathbf{i} - 2\mathbf{j} + 4\mathbf{k} - 2\mathbf{i} - \mathbf{j} - 5\mathbf{k}$ $\vec{v} = \mathbf{i} - 3\mathbf{j} + \mathbf{k}$						
Sol. $\vec{a} \cdot \vec{b} = (2i+3j+4k) \cdot (i-j+k)$	Magnitude = ⊽						
=(2)(1)+(3)(-1)+(4)(1)	$= \sqrt{(1)^2 + (-3)^2 + (1)^2}$						
=2-3+4=3							
	$=\sqrt{1+9+1}=\sqrt{11}$						
25. For what value of λ , the vectors	Direction cosine:						
2i−j+2k & 3i+2λj are perpendicular.	1 3 1						
	$\overline{\sqrt{11}}$, $\overline{\sqrt{11}}$, $\overline{\sqrt{11}}$						
Sol. Let, $a = 2I - J + 2K \ll D = 5I + 2\lambda J$							

Available online @ <u>https://mathbaba.com</u>

EDUGATE Up to Date Solved Papers 23 Applied Mathematics-I (MATH-123) Paper A					
	Section - II	Sol.	See $Q.11$ of $Ex \# 3.3$ (Page $\# 135$)		
Note	: Attemp any three (3) questions $3 \times 8 = 24$		0* 580		
Q.2.(a) Solve the equation		Q.5.(a) Show that :			
	$\frac{4}{x-1} - \frac{5}{x+2} = \frac{3}{x}$ by Factorization.		$\frac{\sin 75^{\circ} - \sin 15^{\circ}}{\cos 75^{\circ} + \cos 15^{\circ}} = \frac{1}{\sqrt{3}}$		
Sol.	See $Q.1(v)$ of $Ex \# 1.1 (Page \# 07)$	Sol.	See $Q.13\!\left(i\right)$ of $Ex\#4.3$ (Page $\#190\right)$		
(b)	Show that the roots of the equation	(b)	Find the right triangle ABC in which		
	$(mx + c)^2 = 4x$ will be equal if $c = \frac{a}{m}$	earn M	$\gamma = 90^{\circ}, a = 250, \alpha = 42^{\circ}25'$		
Sol.	See $Q.3(ii)$ of $Ex \# 1.2$ (Page $\# 33$)	Sol.	See Q.1 of Ex # 5.1 (Page # 208)		
Q.3.	Find the middle term in the	Q.6.(a	a) Find the cosine of the angle		
	expansion of $\left(3x^2 + \frac{1}{2x}\right)^{10}$.		between the vector $\vec{a} = 2i - 8j + 3k$, $\vec{b} = 4j + 3k$		
Sol.	See $\mathrm{Q.6(i)}$ of Ex # 2.1 (Page # 85)	Sol.	See $Q.3(i)$ of $Ex \# 6.2$ (Page $\# 256$)		
Q.4.(a) If $\cos\theta = -\frac{\sqrt{3}}{2}$ and the terminal	(b)	Find the vector whose magnitude is		
	side of the angle lies in the third		5 and which is in the direction of		
	quadrant. Find the remaining		vector $4\underline{i} - 3\underline{j} + \underline{k}$.		
	trigonometric ratios of θ .	Sol.	See Q.2 of Ex # $6.1 \left(Page \ \# \ 247 ight)$		
Sol.	See $\mathrm{Q.1}$ of $\mathrm{Ex}\#3.2\big(Page\#121\big)$		****		
(b)	Prove that $\frac{\cot^2 \theta - 1}{\cot^2 \theta + 1} = 2\cos^2 \theta - 1$				

 $\frac{1}{\cot^2\theta+1} = 2\cos^2\theta-1$ Available online @ <u>https://mathbaba.com</u>