EDUGATE Up to Date Solved Papers 19 Applied Mathematics-I (MATH-113) Paper B

DAE / IIA - 2017

MATH-113 APPLIED MATHEMATICS-I PAPER 'B' PART - A (OBJECTIVE)

Time: 30 Minutes

Marks:15

TOL

Q.1: Encircle the correct answer.

- If a = 2cm, b = 3cm and c = 5cm are sides of triangle, then perimeter of triangle is:
 - [a] 8cm [b] 6cm [c] 10cm [d] 30cm
- If a = 4cm, b = 2cm are adjacent 2. sides of triangle and $\theta = 30^{\circ}$ is the included angle then area is:
 - [a] 2 sq.cm
- [**b**] 4 sq.cm
- [c] 8 sq.cm
- [d] 12 sq.cm
- 3. Area of parallelogram having 'a' and 'b' as adjacent sides and θ is the included angles is:
 - [a] $ab\cos\theta$
- [b] $\frac{1}{2}$ absin θ
- [c] $ab \sin \theta$
- [d] $a \sin \theta$
- 4. Area of parallelogram having base 2cm and height 5cm is:
 - [a] 20 sq.cm
- [b] 30 sq.cm
- [c] 15 sq.cm
- [d] 10 sq.cm
- 5. If R and r denote radii of the outer and inner circles, then area of annulus (ring) is:
 - [a] $\pi \left(R^2 r^2 \right)$ [b] $\frac{\pi}{2} \left(R^2 r^2 \right)$
 - [c] $\pi (R^2 + r^2)$ [d] $(R^2 r^2)$
- 6. Total surface area of the cube of side 'a' is: [a] a^2 [b] $3a^2$ [c] $6a^2$ [d] $4a^2$
- Volume of hollow cylinder if R and 7. r are external and internal radii respectively is:

 - [a] $\pi(R-r)$ [b] $2\pi(R^2-r^2)$
 - [c] $\pi(R^2-r^2)$ [d] $\pi(R-r)h$

- 8. Lateral surface are of regular pyramid if perimeter of base is P and slant height \mathscr{U} is;
 - [a] P ℓ [b] $\frac{1}{3}$ P ℓ [c] $\frac{1}{2}$ P ℓ [d] $\frac{1}{6}$ P ℓ
- 9. The curved surface of a right circular cone of radius 3cm and slant height is 6cm.
 - [a] 54π [b] 9π [c] 18π [d] 6π
- 10. The unit vector of i - 2j - 2k is:

$$\text{[a]} \ i-2j-2k \ \text{[b]} \ \frac{1}{3} \big(i-2j-2k\big)$$

- [c] $\frac{1}{\sqrt{3}} \left(i-2j-2k\right)$ [d] $\frac{1}{2} \left(i-2j-2k\right)$
- earn M_e If $\vec{a} = i + j + k$ and

 $\vec{b} = -i - j - mk$ are perpendicular then 'm' will be equal to:

- [a] 1 [b] -2 [c] ± 1 [d] ± 3
- 12. |axb| is a
 - [a] Vector quant.[b] Scalar quant.
 - [c] Unity
- [d] None of these
- 13. If two rows of a determinant are identical then its value is:
 - [a] 1 / [b] 0 [c] -1 [d] None
- The value of 'm' for which matrix 14.

$$\begin{bmatrix} 2 & 3 \\ 6 & \mathbf{m} \end{bmatrix}$$
 is singular.

- [b] 3 [a] 6 [c] 8 [d] 9
- If A and B are symmetric, then $(AB)^t =$ 15.
 - [a] BA
- [b] A^tB^t
- [c] B^tA^t
- [d] Both a and c

Answer Key

1	c	2	b	3	c	4	d	5	a
6	c	7	c	8	c	9	c	10	b
11	b	12	b	13	b	14	d	15	c

EDUGATE Up to Date Solved Papers 20 Applied Mathematics-I (MATH-113) Paper B

DAE/IIA - 2017

MATH-113 APPLIEDMATHEMATICS-I PAPER 'B' PART-B(SUBJECTIVE)

Time:2:30Hrs Marks:60

Section - I

- Q.1. Write short answers to any Eighteen (18) questions.
- Find the area of right triangle if base and altitude are 20m and 10m respectively.
- **Sol.** Given: base = 20m & Altitude = 10m

Area =
$$\frac{1}{2}$$
 × base × Altitude

Area = $\frac{1}{2}$ × 20 × 10

Area = $\frac{1}{2}$ × 20 × 10

 $\frac{A}{B}$ $\frac{A}{20m}$ C

- 2. Find the area of triangle with sides 5, 4 and 3 meters respectively.
- **Sol.** Let, a = 5m, b = 4m, c = 3m $s = \frac{a+b+c}{2} = \frac{5+4+3}{2} = \frac{12}{2} = 6m$ Area = $\sqrt{s(s-a)(s-b)(s-c)}$

$$A = \sqrt{6(6-5)(6-4)(6-3)}$$

$$A = \sqrt{6(1)(2)(3)}$$

$$A = \sqrt{36} = \boxed{6 \text{ sq. m}}$$

- 3. Find the base of a parallelogram whose area is 256sq.cm and height 32cm.
- **Sol.** Here: base = ? & height = 32cm Area of parallelogram = 256 Base \times Height = 256

$$\mathsf{Base} \times 32 = 256$$

$$\mathsf{Base} = \frac{256}{32}$$

$$\mathsf{base} = 8\,\mathrm{cm}$$

4. Define a rhombus.

- **Sol.** A quadrilateral having all sides are equal with unequal diagonals.
 - 5. Write the formula of area of a regular polygon of 'n' sides when the radius of inscribed circle 'r' is given.

Sol. Area =
$$nr^2 tan \left(\frac{180^{\circ}}{n}\right) sq.unit$$

- 6. The perimeter of a regular hexagon is 12cm, find its area.
- **Sol.** Perimeter of hexagon = 12 cm 6a = 12

$$\Rightarrow$$
 $a = \frac{12}{6} = 2cm$

Area =
$$\frac{na^2}{4} \cot \left(\frac{180^\circ}{n} \right)$$

$$A = \frac{6(2)^2}{4} \cot\left(\frac{180^\circ}{6}\right)$$

$$A = 6 \cot 30^{\circ}$$

$$A = \frac{6}{\tan 30^{\circ}}$$

$$A = 10.39 \,\mathrm{sq.cm}$$

- 7. Find the radius of a circle the area of which is 9.3129 sq.cm.
- **Sol.** As, Area of circle = 9.3129 sq.cm $\pi r^2 = 9.3129$

$$\mathbf{r}^2 = \frac{9.3129}{\pi}$$

$$\mathbf{r}^2 = 2.96 \implies \boxed{\mathbf{r} = 1.72\,\mathrm{cm}}$$

- 8. Define area of the Annulus (Ring).
- **Sol.** Let, Radius of innercircle = \mathbf{r} and. Radius of outer circle = R

Area of Annulus (Ring) =
$$\pi (R^2 - r^2)$$
 sq.unit

9. Find the area of cross-section of river along a line where the depths at equal interval of 10m are noted 0, 7, 11, 15, 0 meters respectively.

EDUGATE Up to Date Solved Papers 21 Applied Mathematics-I (MATH-113) Paper B

Sol.

Sr.#	1	2	3	4	5
Ordinate	0	7	11	15	0

S = 10m

$$A = 0 + 0 = 0$$
 $D = 11$
 $P = 11$
 $P = 10$
 $P = 10$

$$E = 7 + 15 = 22$$

By using Simpson's Rule:

$$Area = \frac{S}{3} [A + 2D + 4E]$$

Area =
$$\frac{10}{3} [0 + 2(11) + 4(22)]$$

Area =
$$\frac{10}{3} [22 + 88]$$

$$Area = \frac{10}{3} [110]$$

$$Area = 366.67 \,\mathrm{m}^2$$

- 10. The base of a right prism is an equilateral triangle with a side of 4cm and its height is 25cm, find its volume.
- **Sol.** Here: a = 4cm, h = 25cm & V = ?

Area of base (equilateral triangle)

May

$$=\frac{\sqrt{3}}{4}a^2 = \frac{\sqrt{3}}{4}(4)^2 = 6.92 \text{cm}^2$$

Volume = Area of base × height

$$V = 6.92 \times 25 = 173.2 \,\mathrm{cm}^3$$

- 11. The inside measurement of a room are 8.5m, 6.4 and 4.5m height. How many men should sleep in the room, if each man is allowed 13.6 cu. m of air?
- **Sol.** Let, $\ell = \text{Length of room} = 8.5 \text{m}$

b = Breadth of room = 6.4m

h = Height of room = 4.5 m

Volume of room = ℓbh

$$= 8.5 \times 6.4 \times 4.5 = 244.80 \text{m}^3$$

Air allowed for one men = 13.6 m³

No. of men that can sleep in room

$$=\frac{244.80}{13.6}=18$$
men

- 12. The diameter of the base of a right circular cylinder is 14cm and its height is 10cm. Find the volume of cylinder.
- **Sol.** Here: d = 14cm & h = 10cm

As,
$$d = 14cm \Rightarrow r = \frac{d}{2} = \frac{14}{2} = 7cm$$

 $Volume = \pi r^2 h$

$$V = \pi (7)^2 10 = 1539.38 \text{ cm}^3$$

13. Find the diameter of the cylinder if its volume is 704cm³ and height is 14cm.

Sol.Here: $d = ?, V = 704cm^3 \& h = 14cm$

As, Volume of Cylinder = 704cm^3

$$\Rightarrow \pi r^2 h = 704$$

$$\Rightarrow$$
 $\mathbf{r}^2 = \frac{704}{\pi \mathbf{h}}$

$$\Rightarrow$$
 $\mathbf{r}^2 = \frac{704}{\pi(14)}$

$$\Rightarrow$$
 $r^2 = 16$

$$\Rightarrow$$
 r = 4 cm

Diameter = d = 2r = 2(4) = 8 cm

- 14. Define pyramid.
- **Sol.** A pyramid is a solid, whose base is a plane polygon and sides being triangles that meet in a common vertex.

EDUGATE Up to Date Solved Papers 22 Applied Mathematics-I (MATH-113) Paper B

- 15. Find the volume of a pyramid with a square base of side 10cm and height 15cm.
- **Sol.** Here: V = ?, a = 10cm & h = 15cmArea of base (square) = a^2 = $(10)^2 = 100cm^2$ Volume = $\frac{1}{3} \times$ Area of base \times height $V = \frac{1}{3} \times 100 \times 15 = \boxed{500cm^3}$
- 16. Find the volume of the largest cone that can be cut out of a cube whose edge is 3cm.
- Sol. Let 'a' = edge of the cube = 3cm

 Then h = 3cm $r = \frac{a}{2} = \frac{3}{2} = 1.5 \text{cm}$ Volume = $\frac{1}{3}\pi r^2 h$ $V = \frac{1}{3}\pi (1.5)^2 (3) = 7.069 \text{ cm}^3$
 - 17. How many square meter of copper will be required to cover a hemispherical dome of 30m diameter.

 Surface area of hemi-sphere dome

Sol.
$$=\frac{1}{2}\pi d^2 = \frac{1}{2}\pi (30)^2 = \boxed{1413.72 m^2}$$

- 18. Given the vectors: $\vec{a}=3i-2j+k$, $\vec{b}=2i-4j-3k, \ \vec{c}=-i+2j+2k$ Find $\vec{a}+\vec{b}+\vec{c}$
- **Sol.** $\vec{a} + \vec{b} + \vec{c}$ = 3i - 2j + k + 2i - 4j - 3k - i + 2j + 2k= 4i - 4j + 0k

- **19.** Given the vectors $\vec{a} = 3i + j k$ and $\vec{b} = 2i + j k = 2i + j k$, find magnitude of $3\vec{a} \vec{b}$.
- **Sol.** $3\vec{a} \vec{b} = 3(3i + j k) (2i + j k)$ $3\vec{a} - \vec{b} = 9i + 3j - 3k - 2i - j + k$ $3\vec{a} - \vec{b} = 7i + 2j - 2k$ $|3\vec{a} - \vec{b}|$ $= \sqrt{(7)^2 + (2)^2 + (-2)^2}$ $= \sqrt{49 + 4 + 4}$ $= |\sqrt{57}|$
- **20.** Find $\vec{a} \cdot \vec{b}$ if $\vec{a} = i + 2j + 2k$ & $\vec{b} = 3i - 2j - 2k$
 - **Sol.** $\vec{a} \cdot \vec{b} = (i + 2j + 2k) \cdot (3i 2j 4k)$ = (1)(3) + (2)(-2) + (2)(-4)= 3 - 4 - 8= -9
 - **21.** For what value of λ , the vectors $2\mathbf{i} \mathbf{j} + 2\mathbf{k} & 3\mathbf{i} + 2\lambda\mathbf{j}$ are perpendicular.
- **Sol.** Let, $\vec{a} = 2i j + 2k \& \vec{b} = 3i + 2\lambda j$ As given vectors are perpendicular.

So,
$$\vec{a} \cdot \vec{b} = 0$$

$$\Rightarrow (2i - j + 2k) \cdot (3i + 2\lambda j) = 0$$

$$\Rightarrow (2)(3) + (-1)(2\lambda) + (2)(0) = 0$$

$$\Rightarrow 6 - 2\lambda + 0 = 0$$

$$\Rightarrow -2\lambda = -6$$

$$\Rightarrow \lambda = \frac{-6}{-2}$$

$$\Rightarrow \lambda = \frac{3}{\lambda - 3}$$

- 22. Find scalar x and y such that x(i+2j)+y(3i+4j)=7i+9j
- **Sol.** x(i+2j)+y(3i+4j)=7i+9j

EDUGATE Up to Date Solved Papers 23 Applied Mathematics-I (MATH-113) Paper B

$$xi + 2xj + 3yi + 4yj = 7i + 9j$$

 $(x + 3y)i + (2x + 4y)j = 7i + 9j$

Comparing coefficients of i & j, we have :

$$x + 3y = 7 \rightarrow (i) \mid 2x + 4y = 9 \rightarrow (ii)$$

Multiplying eq.(i) by 2:

$$2x + 6y = 14 \rightarrow (iii)$$

Subtracting eq.(iii) & eq.(ii)

$$2x + 6y = 14$$

$$\frac{-2x \pm 4y = -9}{2y = 5}$$

$$\Rightarrow y = \frac{5}{2}$$

Put $y = \frac{5}{2}$ in eq.(i)

$$\mathbf{x} + 3\left(\frac{5}{2}\right) = 7$$

$$x = 7 - \frac{15}{2}$$

$$x = \frac{14 - 15}{2}$$

$$\mathbf{x} = \boxed{-\frac{1}{2}}$$

23. Define scalar matrix.

Sol. A diagonal matrix in which all diagonal elements are same is called scalar matrix.

24. Find x and y if

$$\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$$

Sol.
$$\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$$

Comparing corresponding elements of both matrices:

$$x + 3 = y$$
 and $3y - 4 = 2x$

$$x-y=-3 \rightarrow (i) \mid 2x-3y=-4 \rightarrow (ii)$$

Multipling eq. (i) by 2 and subtracting eq. (ii)

$$\begin{array}{c|c} 2x-2y=-6\\ \hline -2x\mp3y=\mp4\\ \hline y=-2\\ \hline \boxed{y=-2} \end{array} \begin{array}{c|c} Put & y=-2 \text{ in eq.(i)}\\ \hline x-(-2)=-3\\ \hline x=-3-2\\ \hline \boxed{x=-5} \end{array}$$

25. Without expansion, verify that:

$$\alpha \quad \beta + \gamma \quad 1 \\
\beta \quad \gamma + \alpha \quad 1 \\
\gamma \quad \alpha + \beta \quad 1$$

(i) Sol. L.H.S. =
$$\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix}$$
$$= \begin{vmatrix} \alpha + \beta + \gamma & \beta + \gamma & 1 \\ \alpha + \beta + \gamma & \gamma + \alpha & 1 \\ \alpha + \beta + \gamma & \alpha + \beta & 1 \end{vmatrix} \xrightarrow{\text{By}} C_1 + C_2$$
$$\begin{vmatrix} 1 & \beta + \gamma & 1 \\ \alpha + \beta + \gamma & 1 \end{vmatrix} \xrightarrow{\text{By}} C_1 + C_2$$

$$= \begin{vmatrix} \alpha + \beta + \gamma & \beta + \gamma & 1 \\ \alpha + \beta + \gamma & \gamma + \alpha & 1 \\ \alpha + \beta + \gamma & \alpha + \beta & 1 \end{vmatrix} \quad \text{By} \quad C_1 + C_2$$

$$= (\alpha + \beta + \gamma) \begin{vmatrix} 1 & \beta + \gamma & 1 \\ 1 & \gamma + \alpha & 1 \\ 1 & \alpha + \beta & 1 \end{vmatrix}$$
 By taking
$$(\alpha + \beta + \gamma)$$
 common from 0

$$= (\alpha + \beta + \gamma)(0)$$
$$= 0 = R.H.S.$$

26. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$ then

find AB.

Sol.
$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 2+8 & 3+10 \\ 6+16 & 9+20 \end{bmatrix}$$

$$= \begin{bmatrix} 10 & 13 \\ 22 & 29 \end{bmatrix}$$

EDUGATE Up to Date Solved Papers 24 Applied Mathematics-I (MATH-113) Paper B

27. If
$$\begin{bmatrix} 2 & 3 \\ 4 & k \end{bmatrix}$$
 is singular, then find k.

$$\begin{vmatrix} 2 & 3 \\ 4 & k \end{vmatrix} = 0$$

$$\Rightarrow$$
 $2k-12=0$

$$\Rightarrow$$
 2k = 12

$$\Rightarrow$$
 $k = \frac{12}{2}$

$$\Rightarrow$$
 $k = 6$

Section - II

Note: Attemp any three (3) questions $3 \times 8 = 24$

Q.2.(a) Given the vectors

$$\vec{a} = 3i - 2j + 4k$$
 and

$$\label{eq:bound} \vec{b} = 3i - 2j + 4k \ \ \text{find the}$$
 magnitude and direction cosines of

$$3\vec{a} - 2\vec{b}$$

Sol. See
$$Q.9(ii)$$
 of $Ex # 8.1$ (Page # 374)

(b) Find the sine and the unit vector perpendicular to each :

$$\vec{a} = i + j + k$$
 and $\vec{b} = 2i + 3j - 4k$

Sol. See
$$Q.19(i)$$
 of $Ex # 8.2$ (Page # 388)

Q.3. Solve by Cramer's Rule

$$x - 2y + z = -1$$

$$3x + y - 2z = 4$$

$$y-z=1$$

Sol. See
$$Q.8(iii)$$
 of $Ex # 9.2$ (Page # 429)

Q.4.(a) From the point within an

Equilateral triangle perpendicular are drawn to the three sides are 6, 7 and 8cm respectively. Find the area of triangle.

Sol. See Q.2 of
$$Ex # 10$$
 (Page # 462)

- (b) Find area of an irregular figure by Simpson's Rule if the ordinates are 9, 11, 13, 12, 10, 13, 15, 17, 14, 12, 7 meters and base is 73 meters.
- **Sol.** See Q.6 of Ex # 14 (Page # 509)
- Q.5.(a) A regular decagon is inscribed in a circle the radius of which is 10cm. Find the area of the decagon.
- **Sol.** See Q.2 of Ex # 12 (Page # 486)
- ____ (b) The radius of a right circular cylinder is 25cm and its height is 15cm. Find its volume, lateral surface and the whole surface area.
 - **Sol.** See example # 02 of Ch # 16
 - Q.6.(a) Find the volume and the total surface area of a cone of radius 6.6cm and height of 12.5cm.
 - **Sol.** See example # 01 of Ch # 18
 - (b) Two spheres each a 10m diameter are melted down and recast into a cone with a height equal to the radius of its base. Find the height of the cone.
 - **Sol.** See example # 02 of Ch # 19
