EDUGATE Up to Date Solved Papers	16	Applied Mathematics-I (MATH-113) Pag	per A
----------------------------------	----	--------------------------------------	-------

3. 	DAE/IIA	- 2017				2π	94.9 <u>0</u> 7						
MATH	12	MATHEMATICS-I		9.		$\frac{2\pi}{3}$ r	adia	ns a	re e	qual	to:		
	PAPER 'A' PART -					- [a] 6				90			
	:30Minutes	Marks:15				[c] 12	20°		[d] 15	0°		
		correct answer.	1	10.		The t	erm	inal	side	of '() lie	s in 4	1 th
1.	The roots of th					quad			1000				be
	$x^{2} + 4x - 21 = 0$	-				[a] Po							
	[a] (7,3)		Ι.	11.		[c] Bo			638-0- -	1000 (1000) (1000) (1000)			ese
	[c](-7, -3)	se sine & cons #				tan (•		1.00				
2.	A second degr	ee equation is				[a]	osx	$-\sin$	1 X I	ין <u>–</u> 1	-tai	лх	
	known as:					[c] $\frac{1}{1}$	$+ \cot$	t x	L	н <u>с</u> с	osx-	-sin	x
		[b] Quadratic										⊦sin	x
		[d] None of these		12.		cos (π+	0) i	s eq	ual t	:0:		
3.	The 10 th term	in 7, 17, 27, \dots is:	ear	n	>	[a] co	osθ		[b] – s	$\sin \theta$		
	FAT COMMENTERS	[c] 99 [d] 100	-			[c] —							
4.	Arithmetic me	an between -7 and 7	1	13.	1	sin (A +	B)	– si	n(A	Υ-Ι	3) is	6
	is:	4				equa	April 1						
	[a] $\frac{7}{2}$	$[b] -\frac{1}{2}$	1	_		[a] 2	Sec. 1						
	2 [c] 0	2 [d] 14				[b] 2	and they			5			
5.	- R.S	inite geometric	Ē			[c] -							
э.					/	[d] 2							
	series $1 + \frac{1}{3} + \frac{1}{9}$	$\frac{1}{2}$ + . $\frac{1}{2}$ is 1 1 1	Į.	14.		lfa=	. 8. /	= 2,	ΖA	= 30)º th	en∠	BIS
	1-1 2	2				equa [a] 3	1		ſĥ	1 72	0		
	[a] $\frac{2}{3}$	[b] $-\frac{2}{3}$		/		[c] 6							
	[c] $\frac{3}{2}$	$[d] -\frac{3}{2}$	BA	15.		lnar				1000 - DALLAN		fon	2
	2	2	1			angle							
6.	The second las					[a] 4							
	expansion (a +	The second se				[c] 60			2.1		0		
	[a] 7a²b [c] 7b ⁷	[b] 7ab ^o [d] 15					<u>A</u>	nsw	er Ke	<u>ey</u>			
	(9)			1	b	2	b	3	a	4	с	5	c
7.	will have	the value:	0	6	b	7	b	8	с	9	с	10	b
	(0) [a] 0	[b] 1		11	d	12	с	13	b	14	a	15	с
	East and a second	[d] 3	20		*	* * * *	***	* * *	* * *	***	* * *	* *	
8.	5 - C	f partial fraction is											
177127		and a standard standard and a set and a standard standard.											
	$\frac{x^3-3x^2}{(x-1)(x+1)}$	$\frac{-}{\left(\mathbf{x}^{2}-1\right)}$ are:											
	To a start with the second sec	[b] 3											
	[c] 4	[d] 5											
	٨	vailable online @ b	hten	.11.		thh-	ha		~				

<u>EDU</u>	GATE Up to Date	Solved Papers 1	7 Applied	Mathematics-I (MATH-113) Paper A
	DAE/IIA-20	017	4.	Define a sequence.
	-113 APPLIEDMA		Sol.	A set of numbers arranged in order
P	APER 'A' PART-B(S	UBJECTIVE)		by some fixed rule is called a
Time:	2:30Hrs	Marks:60		sequence. For examples: (i) $2, 4, 6, \dots$ (ii) $3, 9, 27, \dots$
~ .	Section -		5.	9296-927 (2007) 208 201 (2007) 209 (2007) 209 (2007) 209 (2007)
Q.1.	Write short an Eighteen (18)	STATE ALEXANDER STATE STATES	э.	Find the 7 th term of A.P., in which the first term is 7 and the common
1.	Solve the quadrat	NET NET		difference is -3.
	$x^{2} + 7x + 12 = 0$	- 3	Sol.	Here: $a_{_7}=?$, $a_{_1}=7~\&~d=-3$
C-1				$a_7 = a + 6d$
Sol.	$x^{2} + 7x + 12 = 0$			$a_7 = 7 + 6(-3)$
	$x^{2} + 4x + 3x + 12$	N		$a_{\gamma} = 7 - 18 \qquad \Rightarrow \qquad \boxed{a_{\gamma} = -11}$
	x(x+4)+3(x+		6	Write the formula to find the sum
	$(\mathbf{x}+4)(\mathbf{x}+3)=0$	ToL	earn h	of 'n' terms of an arithmetic
	Either O	R		progression.
	x + 4 = 0	x + 3 = 0	Sol.	$\mathbf{S}_{n} = \frac{n}{2} \left[2\mathbf{a}_{1} + (n-1)\mathbf{d} \right]$
	Either O x + 4 = 0 x = -4 S.S. = $\{-3, -3\}$	X = -3		$\begin{bmatrix} b_n - 2 \lfloor 2a_1 + (n-1)a \rfloor \end{bmatrix}$
2.	Find the sum and		7.	Find the A.M between $\sqrt{5}-4$ and
2.	roots of the equi	"excellence"		$\sqrt{5}+4$
	$9x^2 + 6x + 1 = 0$		Sol.	Let $a = \sqrt{5} - 4$ and $b = \sqrt{5} + 4$
Sol.	Here: $a = 9$, b	= 6, c = 1		A.M. = A = $\frac{a+b}{2}$
	Sum of Roots	Product of Roots	/	
S=	$=-\frac{b}{a}=-\frac{6}{9}=-\frac{2}{3}$	$P = \frac{c}{1}$	DA C	A = $\frac{\sqrt{5} - 4 + \sqrt{5} + 4}{2} = \frac{2\sqrt{5}}{2} = \sqrt{5}$
1			BADO	4 4
3.	Form the quadrat	States and	8.	Write down the geometric sequence in which the 1 st term is 2
	whose roots are	8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		and second term is -6 and n = 5.
Sol.	$\mathbf{S} = -2 + \sqrt{3} + \left(-2\right)$	2-√3)	Sol.	Here: $a_1 = 2$, $a_2 = -6$ & $n = 5$.
	$S = -2 + \sqrt{3} - 2 - $	$\sqrt{3} = -4$		$r = \frac{a_2}{a_1} = \frac{-6}{2} = -3$
	$\mathbf{P} = \left(-2 + \sqrt{3}\right) \left(-2\right)$	(- √ 3)		$a_3 = ar^2 = 2(-3)^2 = 2(9) = 18$
	$\mathbf{P} = \left(-2\right)^2 - \left(\sqrt{3}\right)^2$	80 ($a_4 = ar^3 = 2(-3)^3 = 2(-27) = -54$
				$a_5 = ar^4 = 2(-3)^4 = 2(81) = 162$
	P = 4 - (3) = 1	D O		Hence $2, -6, 18, -54, 162, \dots$ is
	$x^2 - Sx +$	······		required G.P.
X	$^{2}-(-4)x+1=0=$	$\Rightarrow \mathbf{x}^2 + 4\mathbf{x} + 1 = 0 $	9.	Find the Geometric mean between 8 and 72.
		_		Gund / Kr

EDUGATE Up to Date Solved Papers 18 Applied Mathematics-I (MATH-113) Paper A

Let: a = 8 & b = 72Sol. As, $G = \pm \sqrt{ab}$ $G = \pm \sqrt{8 \times 72} = \pm \sqrt{576} = \pm 24$ Expand $\left(\mathbf{x} + \frac{1}{-}\right)^4$. 10. Sol. By using binomial theorem. $= \binom{4}{0} \left(x\right)^{4} \left(\frac{1}{x}\right)^{0} + \binom{4}{1} \left(x\right)^{3} \left(\frac{1}{x}\right)^{1} + \binom{4}{2} \left(x\right)^{2} \left(\frac{1}{x}\right)^{2}$ $+\binom{4}{3}(x)^{1}(\frac{1}{x})^{3}+\binom{4}{4}(x)^{0}(\frac{1}{x})^{4}$ $=(1)(x^{4})(1)+(4)(x^{3})(\frac{1}{x})+(6)(x^{2})(\frac{1}{x^{2}})$ $+(4)(x)\left(\frac{1}{x^{3}}\right)+(1)(1)\left(\frac{1}{x^{4}}\right)$ to Lea $= x^{4} + 4x^{2} + 6 + \frac{4}{x^{2}} + \frac{1}{x^{4}}$ 11. Find the 7th term in the expansion of $\left(x-\frac{1}{x}\right)^{s}$ Here $: a = x, b = -\frac{1}{x}, n = 9 \& r = 6$ Sol. Using general term formula: $T_{r+1} = \binom{n}{r} a^{n-r} b^r$ $T_{6+1} = {9 \choose 6} (x)^{9-6} (-\frac{1}{x})^{6}$ $T_7 = 84x^3 \left(\frac{1}{x^6}\right) = \frac{84}{x^3}$ Expand to three terms, $(1+2x)^{-2}$ 12. **Sol.** $(1+2x)^{-2}$ $= 1 + (-2)(2x) + \frac{(-2)(-2-1)}{24}(2x)^{2} + \dots$

$$= 1 - 4x + \frac{(-2)(-3)}{2}(4x^{2}) + \dots$$

$$= \boxed{1 - 4x + 12x^{2} + \dots}$$
13. Define an example of proper
fraction.
Sol. Example: $\frac{2x}{(x-2)(x+5)}$
14. Resolve into partial fractions
 $\frac{2x}{(x-2)(x+5)} = \frac{A}{x-2} + \frac{B}{x+5} \rightarrow (i)$
 $2x = A(x+5) + B(x-2) \rightarrow (ii)$
Put $x = 2$ in eq.(ii)
 $2(2) = A(2+5) + B(2-2)$
 $4 = A(7) + B(0)$
 $4 = 7A + 0 \Rightarrow \boxed{A = \frac{4}{7}}$
Put $x = -5$ in eq.(ii)
 $2(-5) = A(-5+5) + B(-5-2)$
 $-10 = A(0) + B(-7)$
 $-10 = 0 - 7B \Rightarrow \boxed{B = \frac{10}{7}}$
Put values of A, & B in eq. (i),
we get: $\boxed{\frac{4}{7(x-2)} + \frac{10}{7(x+5)}}$
15. Write identity equation of
 $\frac{x-5}{(x+1)(x^{2}+3)} = \frac{A}{(x+1)} + \frac{Bx+C}{(x^{2}+3)}$

EDUGATE Up to Date Solved Papers 19 Applied Mathematics-I (MATH-113) Paper A

16.	Convert 130º into radians measure.
Sol.	$120^\circ = 120 \times \frac{\pi}{180} = \frac{2\pi}{3} = \boxed{2.09 \text{rad}}$
17.	What is the length of an arc of a
	circle of radius 5 cm whose central
Sol.	angle is 140°. Here: ℓ=?, r = 5cm, θ = 140°
	$\theta = 140^\circ = 140 \times \frac{\pi}{180} = 2.44$ rad.
	By using formula : $\ell = r\theta$
	$\ell = r\theta = (5)(2.44) = 12.22 cm$
18.	Prove that:
1	$\tan^2 30^\circ + \tan^2 45^\circ + \tan^2 60^\circ = \frac{13}{3}$
Sol.	$L H S = tan^2 30^\circ + tan^2 45^\circ + tan^2 60^\circ$
=	$\left(\frac{1}{\sqrt{3}}\right)^2 + (1)^2 + (\sqrt{3})^2 = \frac{1}{3} + 1 + 3$ $\frac{1+3+9}{2} = \frac{13}{2} = \text{R.H.S.}$ Proved.
=2	$\frac{1+3+9}{3} = \frac{13}{3} = R.H.S.$ Proved.
19.	Prove that:
	$\cos^4\theta - \sin^4\theta = 1 - 2\sin^2\theta$
Sol.	L.H.S. = $\cos^4 \theta - \sin^4 \theta$
	$=\left(\cos^2\theta\right)^2-\left(\sin^2\theta\right)^2$
	$= (\cos^2 \theta - \sin^2 \theta) (\cos^2 \theta + \sin^2 \theta)$
	$=(1-\sin^2 heta-\sin^2 heta)(1)$
	$=1-2\sin^2\theta$ = R.H.S. Proved.
20.	Prove that: $\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$
Sol.	L.H.S. = $\sin\left(\frac{\pi}{2} - \theta\right)$
= siı	$n\left(90^\circ - \theta\right) \\ \because \left\{\frac{\pi}{2} \times \frac{180^\circ}{\pi} = 90^\circ\right\}$
	$190^{\circ}\cos\theta + \cos90^{\circ}\sin\theta$
=(1)	$\left(\cos \theta + (0) \sin \theta :: \begin{cases} \text{Using calculator} \\ \cos 90^\circ = 0 \& \sin 90^\circ = 1 \end{cases} ight\}$
$= \cos (1 - \cos \theta)$	$s\theta + 0 = \cos \theta = R.H.S.$ Proved.

21. Show that: $\cos(\alpha+\beta)-\cos(\alpha-\beta)=-2\sin\alpha\sin\beta$ L.H.S. = $\cos(\alpha + \beta) - \cos(\alpha - \beta)$ Sol. = $\left[\cos\alpha\cos\beta - \sin\alpha\sin\beta\right] - \left[\cos\alpha\cos\beta + \sin\alpha\sin\beta\right]$ $= \cos \alpha \cos \beta - \sin \alpha \sin \beta - \cos \alpha \cos \beta - \sin \alpha \sin \beta$ $= -2\sin\alpha\sin\beta = R.H.S.$ Proved. 22. Prove that: $\tan(45^\circ + \theta)\tan(45^\circ - \theta) = 1$ **Sol.** L.H.S. = $\tan(45^\circ + \theta)\tan(45^\circ - \theta)$ $=\frac{\tan 45^{\circ} + \tan \theta}{1 - \tan 45^{\circ} \tan \theta} \times \frac{\tan 45^{\circ} - \tan \theta}{1 + \tan 45^{\circ} \tan \theta}$ $=\frac{1-\tan 40}{1+\tan \theta}\times\frac{1-\tan \theta}{1+(1)\tan \theta} \div \begin{cases} \text{Using calculator} \\ \tan 45^\circ = 1 \end{cases}$ $= \frac{1 + \tan \theta}{1 - \tan \theta} \times \frac{1 - \tan \theta}{1 + \tan \theta} = 1 = R.H.S. \text{ Proved}.$ Find $\cos\theta$, if $\sin\theta = \frac{7}{25}$ and angle θ 23. is an acute angle. **Sol.** As, we know that: $\cos^2 \theta = 1 - \sin^2 \theta$ $\cos^2 \theta = 1 - \left(\frac{7}{25}\right)^2 = 1 - \frac{49}{625} = \frac{625 - 49}{625}$ $\cos^2\theta = \frac{576}{625} \implies \sqrt{\cos^2\theta} = \pm \sqrt{\frac{576}{625}}$ As, θ is an acute angle so, $\cos \theta = \frac{24}{25}$ 24. Define the laws of cosines. $a^2 = b^2 + c^2 - 2bc\cos\alpha$ $b^2 = c^2 + a^2 - 2ca\cos\theta$ ii. Sol. $c^2 = a^2 + b^2 - 2ab\cos\gamma$ iii.

25. The sides of a triangle are 16, 20 and 33 meters respectively. Find its greatest angle.

Sol. Let a = 16, b = 20, c = 33

EDUGATE Up to Date Solved Papers 20 Applied Mathematics-I (MATH-113) Paper A

	As side 'c' is greatest so, we will
	find angle ' γ '.
	Using law of cosines :
	$\cos\gamma = \frac{a^2 + b^2 - c^2}{2ab}$
	$\cos\gamma = \frac{(16)^2 + (20)^2 - (33)^2}{2(16)(20)}$
	$\cos\gamma = -0.6765$
	$\gamma = \cos^{-1} \left(-0.6765\right) \Rightarrow \boxed{\gamma = 132^{\circ}34'}$
26.	In any triangle ABC in which a = 16,
	b = 17, γ = 25º, find 'c'.
Sol.	By using law of cosines:
	$c^2 = a^2 + b^2 - 2ab\cos\gamma$
	$c^2 = (16)^2 + (17)^2 - 2(16)(17)\cos 25^\circ$
	$c^2 = 256 + 289 - 493.03$
	$c^2 = 51.97 \Rightarrow \sqrt{c^2} = \sqrt{51.97} \Rightarrow c = 7.2$
27.	In any triangle ABC if
	a = 3, b = 7, β = 85° find α .
Sol.	
Sol.	By using law of sines:
Sol.	By using law of sines: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$
Sol.	By using law of sines:
Sol.	By using law of sines: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$
Sol.	By using law of sines: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$ We take: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$
Sol.	By using law of sines: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$ We take: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$ $\sin \alpha = \frac{a \sin \beta}{b}$
Sol.	By using law of sines: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$ We take : $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$ $\sin \alpha = \frac{a \sin \beta}{b}$ $\sin \alpha = \frac{3 \sin 85^{\circ}}{7}$ $\sin \alpha = 0.4269$
Sol.	By using law of sines: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$ We take: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$ $\sin \alpha = \frac{a \sin \beta}{b}$ $\sin \alpha = \frac{3 \sin 85^{\circ}}{7}$
	By using law of sines: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$ We take: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$ $\sin \alpha = \frac{a \sin \beta}{b}$ $\sin \alpha = \frac{3 \sin 85^{\circ}}{7}$ $\sin \alpha = 0.4269$ $\alpha = \sin^{-1} (0.4269) \Rightarrow \alpha = 25^{\circ} 16'$

 $\frac{1}{x+1} + \frac{1}{x+2} + \frac{1}{x+3} = \frac{3}{x}$ by using quadratic formula.

Sol. See Q.3(iii) of Ex # 1.1 (Page # 20) (b) For what value of k the roots of the equation $x^2 + 2(k - 2) x - 8k = 0$ are equal. **Sol.** See Q.2(ii) of Ex # 1.2 (Page # 31) Q.3.(a) The 9th term of an A.P is 30 and the 17th term is 50. Find the first three terms. **Sol.** See Q.8 of Ex # 2.1 (Page # 80) (b) Sum the series: 5 + 3 + 1 - 1 - to 10 terms. **Sol.** See Q.1(i) of Ex # 2.3 (Page # 89) Q.4. Find the term independent of x in the expansion of $\left(2x^2 + \frac{1}{x}\right)^9$. **Sol.** See Q.10(ii) of Ex # 3.1 (Page #162) Q.5.(a) Prove that: $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$ **Sol.** See Q.9 of Ex # 5.3 (Page # 256) (b) Show that: $\sqrt{3}\cos\theta - \sin\theta = 2\cos(\theta + 30^\circ)$ **Sol.** See Q.5(ii) of Ex # 6.1 (Page # 279) Q.6.(a) Prove that: $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$ **Sol.** See Triple angles proof (Page # 294) Solve the triangle ABC with given data: (b) c = 4, $\alpha = 70^{\circ}$, $\gamma = 42^{\circ}$. **Sol.** See Q.1 of Ex # 7.5 (Page # 354) *****