DAE/IIA-2017/05 SECOND YEAR

(Common with Bio Medical, Computer, Food Computer Information, Electrical, Electronics, Food Processing & Preservation, Instrument, Critical Health Care and Telecommunication Technologies.)

MATH-233 APPLIED MATHEMATICS – II

PAPER 'A' (Subjective)

Time: 2:30 Hours SECTION - I Marks: 60

$\mathbf{Q.1:}$ Write short answer to any Eighteen (18) of the questions: -

 $18 \times 2 = 36$

1. If
$$f(x) = \log x$$
, prove that : $f(x^a) = af(x)$

2. If
$$f(x) = \frac{1}{1-x}$$
, then find $f[f(5)]$

3. Find:
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$$

4. Evaluate:
$$\lim_{x\to 0} \frac{\sin x^{\circ}}{x}$$
.

5. Differentiate
$$x^{2/3}$$
 by ab-initio method.

6. If
$$y = \sqrt{\frac{a+x}{a-x}}$$
, find $\frac{dy}{dx}$.

6. If
$$y = \sqrt{\frac{a+x}{a-x}}$$
, find $\frac{dy}{dx}$.
7. Find $\frac{dy}{dx}$, If $\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}} = \frac{1}{\sqrt{a}}$
8. Find $\frac{dy}{dx}$, If $ax^2 + by^2 + 2hxy = 0$

8. Find
$$\frac{dy}{dx}$$
, If $ax^2 + by^2 + 2hxy = 0$

9. Differentiate
$$\frac{x^3}{1+x^3}$$
 w.r.t. x^3 .

10. Differentiate
$$\sqrt{\sin \sqrt{x}}$$
 w.r.t. 'x'.

11. Find
$$\frac{dy}{dx}$$
 if $y = \frac{1 + \tan x}{1 - \tan x}$

12. Find
$$\frac{dy}{dx}$$
 if $x = a \sec \theta$, $y = b \tan \theta$.

13. Find the derivative of
$$\frac{\tan x}{x^2}$$

14. Find the value of
$$\frac{d}{dx} \left(\cos^{-1} \left(1 - 2x^2 \right) \right)$$
.

15. Find
$$\frac{d}{dx}(a^{x^2})$$
.

16. Find
$$\frac{d}{dx} (e^{2x} \cos 2x)$$
.

17. Differentiate
$$\ell n \frac{x}{\sqrt{1+x^2}}$$
 w.r.t. 'x'.

18. Find the derivative of
$$x^y = y^x$$

19. Using differential find an approximate value of
$$\sqrt[3]{124}$$
 .

20. If
$$y = \cos 3x + \sin 3x$$
, show that: $y_2 + 9y = 0$

21. If
$$s = log t$$
, find the velocity and acceleration at $t = 3 sec$.

24. Find standard deviation of the values:
$$2, 4, 6, 8, 10$$
.

SECTION - II

<u>2</u>

Note: Attempt any three (03) questions.

 $3 \times 8 = 24$

Q.2. (a) If
$$f(x) = \log \frac{1-x}{1+x}$$
, Prove that $f(x) + f(y) = f\left(\frac{x+y}{1+xy}\right)$

(b) Evaluate
$$\lim_{h\to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

Q.3. (a) Differentiate
$$(ax^2 + b)(cx^2 + d)$$
 w.r.t. 'x'.

(b) Find
$$\frac{dy}{dx}$$
 if $x = \frac{3at}{1+t^3}$, $y = \frac{3at^2}{1+t^3}$

Q.4. (a) Find the derivative of
$$(ax + b)\sqrt{1 + \sin 2x}$$

(a) Find the derivative of
$$(ax + b)\sqrt{1 + \sin 2x}$$

(b) Differentiate $\sec^{-1}\left(\frac{x^2 + 1}{x^2 - 1}\right)$ w.r.t. 'x'.

Prove that x^x has a minimum value at $x = \frac{1}{2}$.

Q.5. Prove that
$$x^x$$
 has a minimum value at $x = \frac{1}{e}$.

Q.6. Calculate mean median, mode from the following frequency table:

Height in cm	No. of Boys
59	_/1
58	3
57	7
56	8
55	25
54	30
53	55
52	50
51	40
50	38
49	30
48	9
47	4