EDUGATE Up to Date Solved Papers 37 B

EDUGATE OP TO Date Solved Fapers 31					
DAE / IA - 2019					
MATH-113 APPLIED MATHEMATICS-I					
	PAPER 'B'	PAR	Т - А	(OBJECTIVE)	
Time	e:30Min	utes		Marks:15	
Q.1:	Encircl	e th	e c	orrect answer.	
1.	Magnitude of the vector				
	2i – 2j –		r		
~				2 [d] 1	
2.				tween the vector	
	a and b	, the	n Co	CALLER AND	
	[a] a.b		[b]	$\frac{\vec{a}.\vec{b}}{ a b }$	
	[c] $\frac{\vec{a}.\vec{b}}{ \vec{a} }$		[d]	$\frac{\vec{a}.\vec{b}}{ \vec{b} }$ To L	ea
3.	If $\vec{a} = 3i$	+ 4j -	-k,	A.	
	$\vec{\mathbf{b}} = -2\mathbf{i}$	+ 3j +	k ti	hen $\vec{a}.\vec{b}$	
				-5 [d] 5	
4.	The orde	r of th	ne m	atrix [1 2 3] is:	
				3×3 [d] 2×3	ī
	2	2 3	4		
5.	$ \mathbf{f} \mathbf{A} = 0$) 1	-1	is a matrix,	_
	2	2 0	1_		
	then Co-1			Cold Carry	
c	- R. S	122	- 20, 20,	-3 [d] 4 //BA	
6.	which m matrix?	atrix d	an i	pe rectangular	
	[a] Diago	nal	[b]	Identify	
	[c] Scalar			None of these	
7.	lf a = 4cn	n, b = :	2cm	are adjacent	
				and θ = 30º is	
				then area is:	
	[a] 2 sq.c [c] 8 sq.c		- 27 BB	4 sq.cm 12 sq.cm	
8.	- S., S S.,			naving sides 8cm	
.	and 5cm			aving sides bein	
	[a] 13 sq.		[b]	40 sq.cm	
	[c] 45 sq.	cm	[d]	30 sq.cm	

A	Applied Mathematics-I (MATH-113) Paper B								
ļ	9.		Area of regular hexagon						
			circumscribed about a circle of radius 2cm is:						
			02003		1323-253	a a ê	36 .	2	į.
		[a	$\frac{24}{\sqrt{3}}$	= [b]	$\overline{\sqrt{3}}$	[c] - \	<u>7</u> 3 [0	^{1]} √	-
	10.		Circumference of a circle whose						
			ndius		_	29			
		[a]π	[b]	$2\pi r$	[c] 7	<u>r</u> 2	$\frac{\mathbf{r}}{2}$	
	11.		kact a			irre _i	gular	figu	re is
			alcula		860-000				
] Mic			es rul	e		
	-	_] Sim			ulo			
	nA		[c] Trapezoidal rule [d] None of these						
3	12.	100	Volume of hexagonal prism with						
		he	height 'h' and side 'a' is:						
			. 3.	5.	1		21		
) la	$\frac{1}{2}$	-a-	h	[b] - 2	-a°h 2	2	
Ē	-	[c] <mark>3√</mark> 2] a²l	n ([d] 3	у√За	^{2}h	
Ŀ	13.		olum						
			height 'h' and radius 'r' is:						
		[a] $\pi r^2 h$ [b] $2\pi r h$							
_	1	200	:] 2πr			[d] 2			
S.F	14.		itera						
-	_	pyramid if perimeter of base is P and slant height ' <i>l</i> ' is:							
	[a] P ℓ [b] $rac{1}{3}$ P ℓ [c] $rac{1}{2}$ P ℓ [d] $rac{1}{6}$ P ℓ				1				
		[a] Pℓ	[b]	$\frac{1}{3}$ P	ℓ [c]	$\frac{1}{2} \mathrm{P}\ell$	[d] -	≟Ρℓ 6
1	15.	Volume of hemi-sphere is:							
		[a	$\frac{2}{3}\tau$	τr ³ [t)] $\frac{4}{3}$:	πr ³ [0	:] $\frac{1}{2}$ π	\mathbf{r}^{3} [d]
	$3\pi r^2$								
	Answer Key								
8	1	b	2	b	3	d	4	a	5
	6	d	7	а	8	b	9	a	10
Č	11	b	12	а	13	а	14	с	15

a a

a

EDUGATE Up to Date So	olved Papers 38 Applied Mathematics-I (MATH-113) Paper B
DAE / IA - 201	9 Sol. $\vec{a} \cdot \vec{b} = (i+3j-2k).(i-j-k)$
MATH-113 APPLIEDMATH	IEMATICS-I $= (1)(1) + (3)(-1) + (-2)(-1)$
PAPER 'B' PART-B(SUE	
Time:2:30Hrs	Marks: 60 Hence \vec{a} and \vec{b} are perpendicular.
Section - I	5. If the vectors $3\mathbf{i} + \mathbf{j} - \mathbf{k}$ and
Q.1. Write short answ	ers to any $\lambda i - 4j + 4k$ are parallel, find
Eighteen (18) que	
1. What are parallel vec	Sol As a and 9 are parallel so
Sol. Two vectors \vec{a} and \vec{b} there exist a non-zero	are parallel if $\vec{a} \times \vec{b} = 0$
$k \in \mathbb{R}$, such that \vec{a} =	i j k
0 Character	$3 \ 1 \ -1 = 0$
2. Given the vectors: \vec{a}	$= 31 - 2\mathbf{j} + \mathbf{k}, \qquad \lambda - 4 - 4 $
$\mathbf{D} = \mathbf{2I} - \mathbf{4J} - \mathbf{5K}, \ \mathbf{C} = \mathbf{C}$	$\begin{vmatrix} \mathbf{z} - \mathbf{i} + 2\mathbf{j} + \mathbf{k}, \\ \mathbf{i} \begin{vmatrix} \lambda & -4 & 4 \end{vmatrix} \\ \mathbf{i} \begin{vmatrix} 1 & -1 \\ -4 & 4 \end{vmatrix} \begin{vmatrix} 3 & -1 \\ \lambda & 4 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 3 & 1 \\ \lambda & -4 \end{vmatrix} = 0$
Find $\mathbf{a} + \mathbf{b} + \mathbf{c}$ Sol. $\vec{a} + \vec{b} + \vec{c}$	$\begin{vmatrix} -4 & 4 \\ -4 & 4 \end{vmatrix} \begin{vmatrix} 3 \\ \lambda & 4 \end{vmatrix} + \begin{vmatrix} -4 \\ \lambda & -4 \end{vmatrix} = 0$
= 3i - 2j + k + 2i - 4j - 3	$(1 + 1)^{-1} (1 $
$= \overline{4i - 4j + 0k}$	$i(0) - (12 + \lambda)j + (-12 - \lambda)k = 0$
	comparing coefficients of 'j', we get :
3. If $\vec{a} = 2i + 3j + 4k$ 8	$z \mathbf{b} = \mathbf{i} - \mathbf{j} + \mathbf{k}$ $12 + \lambda = 0 \implies \lambda = -12$
Find $ \vec{a} \times \vec{b} $	6. Define identity matrix.
i j k	Sol. A diagonal matrix in which all
Sol. $\vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ 2 & 3 & 4 \\ 1 & -1 & 1 \end{vmatrix}$	diagonal elements are 1 is called identity matrix.
$\begin{vmatrix} 1 & -1 & 1 \end{vmatrix}$	
$=\mathbf{i}\begin{vmatrix} 3 & 4\\ -1 & 1 \end{vmatrix} - \mathbf{j}\begin{vmatrix} 2\\ 1 \end{vmatrix}$	$\begin{vmatrix} 4 \\ 1 \end{vmatrix} + k \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} $ 7. Show that $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & -3 \\ 3 & -3 & 6 \end{bmatrix}$ is
$\begin{vmatrix} -1 \\ -1 \end{vmatrix} \begin{vmatrix} -1 \\ -1 \end{vmatrix} \begin{vmatrix} -1 \\ -1 \end{vmatrix}$	1
=i(3+4)-j(2-4)	k + k(-2-3) symmetric.
= i(7) - j(-2) + k((-5) $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^t$
=7i+2j-5k	$\begin{bmatrix} -5 \\ \\ \\ \\ \end{bmatrix} \qquad \qquad$
$ \overline{\mathbf{a}} \times \overline{\mathbf{b}} = \sqrt{49 + 4 + 25} = \sqrt{49 + 4 + 25}$	
4. Prove that \vec{a} and \vec{b}	
perpendicular to ea	= 2 4 -3 = R
$\vec{a} = i + 3j - 2k \&$	$\vec{\mathbf{b}} = \mathbf{i} - \mathbf{j} - \mathbf{k}$ $As, A^t = A so, A is symmetric.$
	Proved.
	8. Find x and y if

EDUGATE Up to Date Solved Papers 39 Applied Mathematics-I (MATH-113) Paper B

	CALLE OF TO Bate Conved 1 apers 0.	o Applica	Wathematics ((WATH 115) Tuper D
	$\begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} \mathbf{x} + 3 & 1 \\ -3 & 3\mathbf{y} - 4 \end{bmatrix}$		$\mathbf{A}^{-1} = \frac{\mathbf{A}\mathbf{d}\mathbf{j}(\mathbf{A})}{ \mathbf{A} }$
Sol.	$\begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix}$		$\begin{bmatrix} 1 & -3 \end{bmatrix}$
UUII			$A^{-1} = \frac{\begin{bmatrix} 1 & -3 \\ -1 & 5 \end{bmatrix}}{2}$
	Comparing corresponding elements of		2
	both matrices :		
	3y - 4 = 2		$\mathbf{A}^{-1} = \begin{vmatrix} \frac{1}{2} & -\frac{3}{2} \\ -\frac{1}{2} & \frac{5}{2} \end{vmatrix}$
	x + 3 = 2 $3y = 2 + 4$		$-\frac{1}{5}$
	x = 2 - 3 $3y = 6$	3	
	$x = -1$ $y = \frac{6}{3}$	11.	Define plane figure.
	9	Sol.	The figure which occupy an area
	y = 2		with only two dimensions is called
		earra	plane figure.
9.	Find the inverse of $\begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$	12.1/	A triangular blank of equal sides is to punch in a copper plate, the
Gal			area of the blank should be 24
Sol.	Let $A = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$		sq.cm find the side.
	$ \mathbf{A} = \begin{vmatrix} 2 & 1 \\ 6 & 3 \end{vmatrix}$	Sol.	Let each side of triangular blank = a cm
	$ A = \begin{vmatrix} 6 & 3 \end{vmatrix}$		Area of triangle of equal sides $=24$
	A = (2)(3) - (6)(1)		$\sqrt{3}a^2 = 24$
	$ \mathbf{A} = 6 - 6$		4
	$ \mathbf{A} = 0$		$\frac{\sqrt{3}}{4}a^2 = 24$ $a^2 = 24 \times \frac{4}{\sqrt{3}}$
	As, $ \mathbf{A} = 0$ so inverse of		$a^2 = 50.40$
	A does not exits.	BA	$\sqrt{a^2} = \sqrt{50.40} \implies a = 7.4 \text{ cm}$
10.	Find A^{-1} if $A = \begin{bmatrix} 5 & 3 \\ 1 & 1 \end{bmatrix}$	13.	If the perimeter of a square is 40cm. Find the area of the square.
	[5 3]	Sol.	Let, length of one side of square = a = ?
Sol.	$\mathbf{A} = \begin{bmatrix} 5 & 3 \\ 1 & 1 \end{bmatrix}$		As, Perimeter of square $=40 \mathrm{cm}$
	5 3		4a = 40
	$ \mathbf{A} = \begin{vmatrix} 5 & 3 \\ 1 & 1 \end{vmatrix} = 5 - 3 = 2$		$a = \frac{40}{4} = 10$ cm
	Adj A = $\begin{bmatrix} 1 & -3 \\ -1 & 5 \end{bmatrix}$		Area of square $= a^2$
	$\lfloor -1 5 \rfloor$		$Area = (10)^2 = 100 sq. cm$
		10	

EDUGATE Up to Date Solved Papers 40 Applied Mathematics-I (MATH-113) Paper B

14.	The diagonals of a rhombus are 40cm and 30cm, find its area.	19. Three cubes of metal whose edges are 3, 4 and 5cm respectively, are
Sol.	Here $d_1 = 40m$, & $d_2 = 30m$	melted without any loss of metal
	Area of Rhombus = $\frac{d_1 \times d_2}{2}$	into a single – cube. Find (i) edge of the new cube
		(ii) surface area of the new cube.
	$Area = \frac{40 \times 30}{2} = \boxed{600 \mathrm{sq.m}}$	Sol. (i) Here : Edges of melted cubes
15.	Define a polygon.	are 3cm, 4cm, 5cm
Sol.	A plane figure bounded by a finite	Let, edge of new cube = acm
	number of straight lines is called	(ii) As, volume of new cube = volume of melted cubes
a <u></u>	polygon.	$a^3 = 3^3 + 4^3 + 5^3$
16.	The perimeter of a regular	
122 . 123	hexagon is 12cm, find its area.	$a^3 = 216$
Sol.	Perimeter of hexagon = 12 cm 6a = 12 $\Rightarrow a = \frac{12}{6} = 2 cm$ $na^{2} cot(180^{\circ})$	$a^{3}\right)^{\frac{1}{3}} = (216)^{\frac{1}{3}} \implies \boxed{a = 6cm}$
	\Rightarrow a = 12/6 = 2cm	Surface area of new cube $= 6a^2$
	Area = $\frac{na^2}{4} \cot\left(\frac{180^\circ}{n}\right)$	
	$A = \frac{6(2)^2}{4} \cot\left(\frac{180^\circ}{6}\right)$	20. The dimension of a marriage hall are 100m, 50m and 18m respectively, find volume of the hall.
	$A = 6 \cot 30^\circ = \frac{6}{\tan 30^\circ}$	Sol. Here: ℓ = 100m, b = 50m & h = 18m
		Volume = <i>l</i> bh
3 <u></u>	A = 10.39 sq.cm	$Volume = \ell bh$ $V = 100 \times 50 \times 18 = 90000 \mathrm{m^3}$
17.	$A = \boxed{10.39 \text{sq.cm}}$ Find the radius of a circle the area	
	$A = \boxed{10.39 \text{sq.cm}}$ Find the radius of a circle the area of which is 9.3129 sq.cm.	$V = 100 \times 50 \times 18 = 90000 \text{ m}^3$ 21. If base of a field is 50m and number of ordinates are 11, then
17. Sol.	A = 10.39 sq.cm Find the radius of a circle the area of which is 9.3129 sq.cm. As, Area of circle = 9.3129 sq.cm	$V = 100 \times 50 \times 18 = 90000 \text{ m}^3$ 21. If base of a field is 50m and number of ordinates are 11, then find breadth of strip.
	$A = \boxed{10.39 \text{ sq.cm}}$ Find the radius of a circle the area of which is 9.3129 sq.cm. As, Area of circle = 9.3129 sq.cm $\pi r^2 = 9.3129$	$V = 100 \times 50 \times 18 = 90000 \text{ m}^3$ 21. If base of a field is 50m and number of ordinates are 11, then find breadth of strip. Sol. Length of base = 50m
	A = 10.39 sq.cm Find the radius of a circle the area of which is 9.3129 sq.cm. As, Area of circle = 9.3129 sq.cm	$V = 100 \times 50 \times 18 = 90000 \text{ m}^3$ 21. If base of a field is 50m and number of ordinates are 11, then find breadth of strip. Sol. Length of base = 50m As, No. of ordinates = 11
	$A = \boxed{10.39 \text{ sq.cm}}$ Find the radius of a circle the area of which is 9.3129 sq.cm. As, Area of circle = 9.3129 sq.cm $\pi r^2 = 9.3129$ $r^2 = \frac{9.3129}{\pi}$	$V = 100 \times 50 \times 18 = 90000 \text{ m}^3$ 21. If base of a field is 50m and number of ordinates are 11, then find breadth of strip. Sol. Length of base = 50m As, No. of ordinates = 11 so, No. of strips = 10
Sol.	A = 10.39 sq.cm Find the radius of a circle the area of which is 9.3129 sq.cm. As, Area of circle = 9.3129 sq.cm $\pi r^2 = 9.3129$ $r^2 = \frac{9.3129}{\pi}$ $r^2 = 2.96 \implies r = 1.72 cm$	$V = 100 \times 50 \times 18 = 90000 \text{ m}^3$ 21. If base of a field is 50m and number of ordinates are 11, then find breadth of strip. Sol. Length of base = 50m As, No. of ordinates = 11 so, No. of strips = 10 S = Width of each strip
	A = 10.39 sq.cm Find the radius of a circle the area of which is 9.3129 sq.cm. As, Area of circle = 9.3129 sq.cm $\pi r^2 = 9.3129$ $r^2 = \frac{9.3129}{\pi}$ $r^2 = 2.96 \implies r = 1.72 \text{ cm}$ Write the area of the segment in	$V = 100 \times 50 \times 18 = 90000 \text{ m}^3$ 21. If base of a field is 50m and number of ordinates are 11, then find breadth of strip. Sol. Length of base = 50m As, No. of ordinates = 11 so, No. of strips = 10 S = Width of each strip
Sol.	A = 10.39 sq.cm Find the radius of a circle the area of which is 9.3129 sq.cm. As, Area of circle = 9.3129 sq.cm $\pi r^2 = 9.3129$ $r^2 = \frac{9.3129}{\pi}$ $r^2 = 2.96 \implies r = 1.72 cm$	$V = 100 \times 50 \times 18 = 90000 \text{ m}^3$ 21. If base of a field is 50m and number of ordinates are 11, then find breadth of strip. Sol. Length of base = 50m As, No. of ordinates = 11 so, No. of strips = 10 $S = Width \text{ of each strip}$ $S = \frac{\text{Length of base}}{\text{No. of strips}}$
Sol.	A = 10.39 sq.cm Find the radius of a circle the area of which is 9.3129 sq.cm. As, Area of circle = 9.3129 sq.cm $\pi r^2 = 9.3129$ $r^2 = \frac{9.3129}{\pi}$ $r^2 = 2.96 \implies r = 1.72 cm$ Write the area of the segment in terms of height and length of the	$V = 100 \times 50 \times 18 = 90000 \text{ m}^3$ 21. If base of a field is 50m and number of ordinates are 11, then find breadth of strip. Sol. Length of base = 50m As, No. of ordinates = 11 so, No. of strips = 10 S = Width of each strip
Sol.	A = 10.39 sq.cm Find the radius of a circle the area of which is 9.3129 sq.cm. As, Area of circle = 9.3129 sq.cm $\pi r^2 = 9.3129$ $r^2 = \frac{9.3129}{\pi}$ $r^2 = 2.96 \implies r = 1.72 \text{ cm}$ Write the area of the segment in terms of height and length of the chord of the segment.	$V = 100 \times 50 \times 18 = 90000 \text{ m}^3$ 21. If base of a field is 50m and number of ordinates are 11, then find breadth of strip. Sol. Length of base = 50m As, No. of ordinates = 11 so, No. of strips = 10 $S = Width \text{ of each strip}$ $S = \frac{\text{Length of base}}{\text{No. of strips}}$

EDUGATE Up to Date Solved Papers 41 Applied Mathematics-I (MATH-113) Paper B

internal diameter of these circles the top t is the slant height and h is be 2.2cm and 3.8cm respectively the height of the frustum of a and the height be 6.5cm, find the pyramid, then find volume of hollow interior. Volume of the frustum of a (i) **Sol.** Here : D = 3.8 cm. d = 2.2 cm & h = 6.5 cm pyramid. A = Area of base(Annulus)(iii)_ Lateral surface area. Sol. $\mathbf{A} = \frac{\pi}{4} \left(\mathbf{D}^2 - \mathbf{d}^2 \right)$ Volume of the frustum of pyramic **(i)** $A = \frac{\pi}{4} \left(\left(3.8 \right)^2 - \left(2.2 \right)^2 \right)$ $V = \frac{h}{2} \left[A_1 + A_2 + \sqrt{A_1 A_2} \right]$ $A = \frac{\pi}{4} (9.6)$ (ii) Leteral Surface area of the frustum of a Pyramid(L.S.A.) = $\frac{1}{2}$ × sum of perimeter $A = 7.54 \, \text{cm}^2$ Volume of hollow interior = $A \times h^{\circ}$ of the base and top × slant height 26. Define sphere. $= 7.54 \times 6.5 = 49 \text{ cm}^3$ Sol. A sphere is a solid bounded by a 23. Find the diameter of the cylinder if closed surface, every point of its volume is 704cm³ and height is which is equidistance from a fixed 14cm. point called the Centre. **Sol.**Here: $d = ?, V = 704 \text{ cm}^3 \& h = 14 \text{ cm}$ 27. Find the volume of a segment of a As, Volume of Cylinder = 704 cm³ sphere whose height is $4\frac{1}{2}$ cm and $\pi r^2 h = 704$ \Rightarrow diameter for whose base is 8cm. \Rightarrow $\mathbf{r}^2 = \frac{704}{-1}$ Here: $h = 4\frac{1}{2} = \frac{9}{2} = 4.5 \text{ cm},$ Sol. \Rightarrow $\mathbf{r}^2 = \frac{704}{\pi(14)}$ & $d = 8cm \Rightarrow r = 4cm$ Volume of segment of shpere \Rightarrow r² = 16 $V = \frac{\pi h}{\rho} \left[h^2 + 3r^2 \right]$ r = 4 cm \rightarrow $\mathsf{Diameter} = d = 2r = 2(4) = \big| 8\,\mathrm{cm}$ $V = \frac{\pi (4.5)}{\alpha} \left[(4.5)^2 + 3(4)^2 \right]$ 24. Define pyramid. Sol. A pyramid is a solid, whose base is a $V = 160.81 \text{ cm}^3$ plane polygon and sides being triangles that meet in a common vertex. Section - II

25. Let A₁ be the area of the base, and A₂ be the area of the top, a is the side of the base and b is the side of **Note :** Attemp any three (3) questions $3 \times 8 = 24$

EDUGATE Up to Date Solved Papers 42 Applied Mathematics-I (MATH-113) Paper B

EDU	GATE Up to Date Solved Papers 4
Q.2.(a	a) Show that the vectors 4i – 6j + 9k
	and $-6i+9j-rac{27}{2}k$ are parallel.
Sol.	See $\mathrm{Q.7}$ of $\mathrm{Ex}\#\ 8.1 \big(Page\ \#\ 373 \big)$
(b)	Find $\left (\vec{a} \times \vec{b}) \times \vec{c} \right $ if
	$\vec{\mathbf{a}} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k}, \ \vec{\mathbf{b}} = 2\mathbf{i} + \mathbf{j} - \mathbf{k},$
	$\vec{c} = i + 3j - 2k.$
Sol.	See $Q.18$ of $Ex\#8.2\bigl(\mbox{Page}~\#~388\bigr)$
Q.3.(a	a) If $\mathbf{A} = \begin{bmatrix} 2 & -2\sqrt{2} \\ \sqrt{2} & 2 \end{bmatrix}$ and
	$\mathbf{B} = \begin{bmatrix} 2 & 2\sqrt{2} \\ -\sqrt{2} & 2 \end{bmatrix}$, show that A
	and B commute.
Sol.	See Q.9 of Ex # $9.1 (Page # 413)$
(b)	Find the inverse if it exists, of the
	[1 2 3]
	matrix. $A = \begin{vmatrix} 1 & 2 & 3 \\ -1 & 0 & 4 \\ 0 & 2 & 2 \end{vmatrix}$
Sol.	See $Q.4(iii)$ of $Ex \# 9.3 (Page \# 440)$
Q.4.(a	a) A track round the inside of a
	rectangular grassy plot 40m by
	30m occupies 600 sq.m show that
	the width of the track is 5m.

- **Sol.** See Q.2 of Ex # 11 (Page # 474)
- (b) The distance between the corners of a hexagonal nut is 2.28 cm. Find the distance between the jaws of the wrench needed to fit this nut.
- **Sol.** See Q.6 of Ex # 12 (Page # 487)
- Q.5.(a) Find area of an irregular figure by Simpson's Rule if the ordinates are

9, 11, 13, 12, 10, 13, 15, 17, 14, 12, 7 meters and base is 73 meters.

Sol. See Q.6 of Ex # 14 (Page # 509)

(b) The length, width and height of a rectangular prism are 6, 4 and 3 meters respectively. Find the volume, the surface area and the length of the diagonal.

Sol. See Q.1 of Ex # 15 (Page # 518)

Q.6.(a) Find the cost of canvas, at the rate of Rs.5 per square meter, required to make a tent in the form of a frustum of a square pyramid. The sides of the base and top are 6m and 4m respectively and the height is 8m, taking no account of waste.

Sol. See Q.5 of Ex # 17[B](Page # 556)

(b) Find the curved and total surface area and the volume of the frustum of a cone whose top and bottom diameters are 6m and 10m and the height is 12m.

Sol. See Q.1 of Ex # 18[B](Page # 573)
