DAE/IA-2019/05 SECOND YEAR

(Common with Bio Medical, Computer, Food Computer Information, Electrical, Electronics, Food Processing & Preservation, Instrument, Critical Health Care and Telecommunication Technologies.)

MATH-233 APPLIED MATHEMATICS – II PAPER 'A' (Subjective)

Time: 2:30 Hours SECTION - I Marks: 60

$\mathbf{Q.1:}\;\;$ Write short answer to any Eighteen (18) of the questions: -

 $18 \times 2 = 36$

1. Fid the value of
$$\lim_{x\to 2} \frac{x^3-8}{x^2-3x+2}$$

2. Find the value of
$$\lim_{x\to 1} \frac{x^2+x-2}{x^2-x}$$
.

3. Find:
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$$
.

4. Find the value of
$$\lim_{x\to 0} \frac{\sqrt{4+x}-2}{x}$$
.

5. Find
$$\frac{dy}{dx}$$
 if $x = t + 2$, $y = 2t^2 + 2$.

4. Find the value of
$$\lim_{x\to 0} \frac{\sqrt{4+x}-2}{x}$$
.

5. Find $\frac{dy}{dx}$ if $x = t+2$, $y = 2t^2 + 2$.

6. Find $\frac{dy}{dx}$ if $x = \theta^2 - \theta - 1$, $y = 2\theta^2 + \theta + 1$.

7. Find $\frac{dy}{dx}$ if $x = u + \frac{1}{u}$, $y = u - \frac{1}{u}$.

7. Find
$$\frac{dy}{dx}$$
 if $x = u + \frac{1}{u}$, $y = u - \frac{1}{u}$.

8. Differentiate
$$\frac{x^3}{1+x^3}$$
 w.r.t. x^3 .

9. Differentiate
$$\frac{x^2}{1+x^2}$$
 w.r.t. x^2 .

10. Show that if
$$x = a\theta^2$$
, $y = 2a\theta$, then $y\frac{dy}{dx} - 2a = 0$.

11. Differentiate
$$\cos^2(ax+b)$$
 w.r.t. 'x'.

12. Differentiate
$$\csc^2 3x$$
 w.r.t. 'x'.

13. Differentiate
$$\sec \sqrt{a + bx}$$
 w.r.t. 'x'.

14. Differentiate
$$\sin(\tan x)$$
 w.r.t. 'x'.

15. Differentiate
$$\cot^3(3x+1)$$

16. Differentiate
$$\sin[\sin(\cos x)]$$
 w.r.t. 'x'.

17. Find the derivative of
$$x^2 \tan x$$
.

18. Find the turning (or critical point of the curve
$$y = \sin 2x$$
 between 0 and $\frac{\pi}{2}$.

19. Find the turning points of the curve
$$y = x^2 - 3x + 3$$
.

20. Find the turning points of the curve
$$y = 2x^3 - 15x^2 + 36x + 10$$

21. Find the extreme values of the function
$$x^2 - 4x - 6$$
.

22. Calculate the median for
$$88.03$$
, 94.50 , 94.90 , 95.05 , 84.50 .

27. Write down the formula to find the probability of two not mutually exclusive events.

SECTION - II

Note: Attempt any three (03) questions.

 $3 \times 8 = 24$

- Q.2. (a) If $f(x) = \log\left(\frac{1-x}{1+x}\right)$, Prove that : $f(x) + f(y) = f\left(\frac{x+y}{1+xy}\right)$.
 - **(b)** Evaluate: $\lim_{\theta \to 0} \frac{\tan \theta \sin \theta}{\sin^3 \theta}$.
- **Q.3.** (a) If $\frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$ prove that $y \frac{dy}{dx} + x = 0$.
 - **(b)** Find $\frac{dy}{dx}$ if $x = a\left(\frac{t^2}{2} t\right)$, $y = b\left(\frac{t^3}{3} \frac{t^2}{2}\right)$.
- Q.4. (a) Find $\frac{dy}{dx}$ when $x = a(\cos t + \sin t)$, $y = a(\sin t t \cos t)$.
 - **(b)** Find the derivative of $x^x + x^{\sin x}$.
- **Q.5.** Find the maximum and minimum (extreme) values of the function $(x-2)^3(x-3)^2$.
- **Q.6.** Calculate A.M. and median from the following data.

				1 1 1 1 1 1 1 1 1					1 1./ 1 2 / 1			
Marks	15	17	18	19	20	25	26	27	28	29	30	31
Boys	30	34	9	38	15	50	52	81	56	58	15	62

(b) A die is thrown, find the probability that the dots on the top are prime numbers or odd numbers.
