
EDUGATE Up to Date Solved Papers 13 Applied Mathematics-I (MATH-113) Paper B

				ippiic	G 1910		mater	<u> 11</u>	1011		<u>, , , , ,</u>	PCIL	
DAE / IA - 2017				9.	The surface area of a sphere of								
MATH-113 APPLIED MATHEMATICS-I					252	radius 'r' is:							
PAPER 'B' PART - A(OBJECTIVE)					[a	[a] $4\pi r^3$ [b] $4\pi r^2$							
Time: 30 Minutes Marks: 15					[c] πr²			[d] $\frac{2}{3}$	$\frac{4}{3}\pi r^2$			
$\mathbf{Q.1:}$ Encircle the correct answer.				10.	⊣ a	.īb i	s a;			7 0			
1. 2. 3. 4.	sides of a triangle then perimeter of triangle is: [a] 8cm [b] 6cm [c] 10cm [d] 30cm Area of a square having a side 4cm is equal to: [a] 30sq.cm [b] 16sq.cm		Lea	11. 12.	[a [t] [c ا [م [م ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	[a] Vector quantity [b] Scalar quantity [c] Unity [d] None of these If $\vec{a} \times \vec{b}$ then \vec{a} and \vec{b} are: [a] Parallel [b] None parallel [c] Perpendicular [d] None of these Magnitude of the vector $\vec{i} - 3\vec{j} + 5\vec{k}$ is: [a] 3 [b] 25 [c] 35 [d] $\sqrt{35}$ The value of determinant $\begin{vmatrix} 2 & 0 \\ 1 & 3 \end{vmatrix}$							
	No. 176 - 155 - 17	[b] πab			1. 2	:]6]1	k		[b] – [d] 0				
	$\begin{bmatrix} c \end{bmatrix} = \begin{bmatrix} a \\ 2 \end{bmatrix}$			14.		-/	dor			, trix [19	2]	
5 . 6.	ordinates are: [a] Odd [c] In fraction	r base base	ABI	15.	is [a [c ff [a	:] 3×1 :] 3×3] t 	n e el n arc	emei Szere	[b] 1 [d] 2 nts 0 5, th [b] 2 [d] 4	×3 ×3 f a ro en its	w or		
7.	Lateral surface			1	с	2	b	3	c	4	b	5	0
	circular cylinde	Chemples .		6	78	2	28.12	3 8	- 5722	4 9	b	10	a b
	[a] πr ²	[b] πrh		11	a a	12	c d	° 13	c a	9 14	b b	10	D C
	[c] 2πrh	[d] πr²h			N.9851	a contractor	C. VENEROS	, ^{1000,280} ,	12253	***	194302	K33820	
8.	pyramid is a:	e of frustum of the [b] Rectangle [d] Square											

EDUGATE Up to Date Solved Papers 15 Applied Mathematics-I (MATH-113) Paper B

As, circumference of base = C = 44m10. The volume of the cube is 95 cu.cm. Find the surface area and $2\pi r = 44$ the edge of the cube. $r = \frac{44}{2\pi} \implies r = 7m$ Sol. Let 'a' be edge of cube As. volume = 95 Volume of Air = $\frac{1}{2}\pi r^2 h$ $a^{3} = 95$ $(a^3)^{\frac{1}{3}} = (95)^{\frac{1}{3}}$ $=\frac{1}{3}\pi(7)^{2}(9)=461.81\,\mathrm{m}^{3}$ Edge of cube = a = 4.56 cm14. Write formula for volume of a Surface area of cube = $6a^2$ cone. $S.A. = 6(4.56)^2 = 124.92 \text{ cm}^2$ **Sol.** Volume of cone = $V = \left| \frac{1}{3} \pi r^2 h \right|$ cu.unit 11. Find the height of the cylinder if volume is 528cm³ and diameter is 15. A solid cylinder of glass the radius 4cm. of whose base is 9cm and height **Sol.** Here : $h = ?V = 528 cm^3 \& d = 4 cm \bigcirc$ 12cm is melted and turned into a As, $r = \frac{d}{2} = \frac{4}{2} = 2cm$ sphere. Find the radius of the sphere so formed. As, Volume of Cylinder = 528cm^3 Sol. Let, r = Radius of the sphere = 9cm, $\pi r^{2}h = 528$ \Rightarrow h = Height of cylinder = 12cm, $h = \frac{528}{\pi (2)^2} \Rightarrow h = 42 cm$ $r_1 = Radius sphere = ?$ Volume of Cylinder = $\pi r^2 h$ 12. $V = \pi (9)^2 12 = 972\pi cm^3$ The height of pyramid with square base is 12cm, and its volume is As. Volume of Sphere = Volume of Cylinder 100cu.cm. Find length of side of $\frac{4}{2}\pi r_1^3 = 927\pi$ square base. Here : h = 12cm, $V = 100cm^3 \& a = ?$ Sol. $\mathbf{r}_{1}^{3} = \frac{927\pi \times 3}{4\pi} = 729 \implies \mathbf{r}_{1} = 9 \,\mathrm{cm}$ As, Volume of Pyramid = 100cm^3 Find the volume of a segment of a 16. $\frac{1}{2}$ × Area of base × Height = 100 sphere whose height is $4\frac{1}{2}$ cm $\frac{1}{2} \times a^2 \times 12 = 100$ and diameter for whose base is 8cm. $4a^2 = 100 \Longrightarrow a^2 = \frac{100}{4}$ Here: $h = 4\frac{1}{2} = \frac{9}{2} = 4.5 \text{ cm},$ Sol. $a^2 = 25 \implies a = 5 cm$ & $d = 8 cm \Rightarrow r = 4 cm$ Volume of segment of shpere = $\frac{\pi h}{6} \left[h^2 + 3r^2 \right]$ 13. The circumference of base of a 9m high comical tent is 44m, find the $V = \frac{\pi (4.5)}{6} \left[(4.5)^2 + 3(4)^2 \right] = \boxed{160.81 \text{ cm}^3}$ volume of the air contained in it. Here: C = 44 m, h = 9m, & V=? Sol.

EDUGATE Up to Date Solved Papers 16 Applied Mathematics-I (MATH-113) Paper B

17. The base of a right prism is an equilateral triangle with a side of 4cm and its height is 25cm, find its volume.
Sol. Here:
$$a = 4cm$$
, $h = 25cm \& V = ?$
Area of base (equilateral triangle)
 $= \frac{\sqrt{5}}{4} a^2 = \frac{\sqrt{3}}{4} (4)^{\$} = 6.92cm^2$
Volume = Area of base x height
 $\overline{V} = 6.92 \times 25 = \overline{173.2cm^3}$
18. Find unit vector along the vector
 $4i - 3j - 5k$
Sol. Let $\overline{a} = 4i - 3j - 5k$
 $|\overline{a}| = \sqrt{4i^3 + (-3)^2 + (-5)^2}$
 $|\overline{a}| = \sqrt{4i^3 + (-3)^2 + (-5)^2}$
 $|\overline{a}| = \sqrt{16 + 9 + 25} = \sqrt{50}$
 $|\overline{a}| = \sqrt{25 \times 2} = 5\sqrt{2}$
 $|\overline{bnit} \ Vacture = \hat{a} = \frac{\overline{a}}{|\overline{a}|} = \frac{4i + 3j - 5k}{|5\sqrt{2}|}$
19. Find $(\overline{a} + \overline{b}) \cdot (\overline{a} - \overline{b})$ if
 $\overline{a} = 2i + 2j + 3k \& \overline{b} = 2i - j + k$
 $\overline{a} + \overline{b} = 4i + j + 4k$
 $\overline{a} - \overline{b} = (2i + 2j + 3k) + (2i - j + k)$
 $\overline{a} - \overline{b} = 3j + 2k$
 $(\overline{a} + \overline{b}) \cdot (\overline{a} - \overline{b})$
 $= (4i + j + 4k) \land (-5) = (4i + 3j - 2k)$
 $\overline{a} - \overline{b} = 2i + 2j + 3k - 2i + j + k}$
 $\overline{a} - \overline{b} = 3j + 2k$
 $(\overline{a} + \overline{b}) \cdot (\overline{a} - \overline{b})$
 $= (4i + j + 4k) \land (-5) = (2i + 2j + 3k) - (2i - j + k)$
 $\overline{a} - \overline{b} = 3j + 2k$
 $(\overline{a} + \overline{b}) \cdot (\overline{a} - \overline{b})$
 $= (4i + j + 4k) (\circ (3j + 2k) = (4i + 0) + (2i - j + k)$
 $\overline{a} - \overline{b} = 3j + 2k = (-j) + k$
 $\overline{a} - \overline{b} = 3j + 2k$
 $(\overline{a} + \overline{b}) \cdot (\overline{a} - \overline{b})$
 $= (4i + j + 4k) (\circ (3j + 2k) = (4i + 0) + (2i - j + k)$
 $\overline{a} - \overline{b} = 3j + 2k = (-j) + k$
 $\overline{a} - \overline{b} = 3j + 2k = (-j) + k$
 $\overline{a} - \overline{b} = 3j + 2k = (-j) + k$
 $\overline{a} - \overline{b} = 3j + 2k = (-j) + k$
 $\overline{a} - \overline{b} = 3j + 2k = (-j) + k$
 $\overline{a} - \overline{b} = 3j + 2k = (-j) + 2k = 3$
Sol. $|\overline{a} + (\alpha + 1)j + 2k| = 3$
Sol. $|\overline{a} + (\alpha + 1)j + 2k| = 3$
 $\overline{a} - (4i + j + 4k) \circ (3j + 2k) = (-j + k) + (2i - j + k) = (-j) + (-j)^{-1} +$

EDUGATE Up to Date Solved Papers 17 Applied Mathematics-I (MATH-113) Paper B

	$\alpha + 2 = 0$	$2\alpha - 2 = 0$						
	$\alpha = -2$	$2\alpha = 2 \Rightarrow \alpha = 1$		$\mathbf{A}^{-1} = \frac{\begin{bmatrix} 1 & -3 \\ -1 & 5 \end{bmatrix}}{2}$				
23.	Define row and	d column vectors.						
Sol.	A matrix has or	nly one row is called	$\mathbf{A}^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{3}{2} \\ -\frac{1}{2} & \frac{5}{2} \end{bmatrix}$					
	row matrix.			$A^{-1} = \begin{bmatrix} - & - \\ 1 & 5 \end{bmatrix}$				
		only one column is		$\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$				
N - 1975 - 15	called column	matrix.						
24.	Find x and y if		26.	Find 'k' if $\begin{vmatrix} \mathbf{k} - 2 & 1 \\ 5 & \mathbf{k} + 2 \end{vmatrix} = 0$				
	$\begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} x \\ -3 \end{bmatrix}$	+3 1						
		•	Sol.	$\begin{vmatrix} \mathbf{k} - 2 & 1 \\ 5 & \mathbf{k} + 2 \end{vmatrix} = 0$				
6-1	$\begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix}$	+3 1		5 k+2				
301.	$\begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} x + 2z \\ -z \end{bmatrix}$	-3 3y - 4		$ k-2 1 _{0}$				
	Comparing corresp	ponding elements of TOL	earn	5 k+2 = 0				
	both matrices :	Way 10	Ma	$\begin{vmatrix} \mathbf{k} - 2 & \mathbf{k} + 2 \\ \mathbf{k} - 2 & \mathbf{l} \\ 5 & \mathbf{k} + 2 \end{vmatrix} = 0$ (k-2)(k+2)-(1)(5)=0 k ² + 2k - 2k - 4 - 5 = 0 k ² - 9 = 0 k ² = 9				
	3v	-4=2		$1^{2} \cdot 9^{2} \cdot 9^{2} \cdot 4 = 0$				
	$x + 3 = 2 \begin{vmatrix} -3 \\ 3 \\ 3 \end{vmatrix}$	$= 2 + 40^{3}$		K + ZK - ZK - 4 - 5 = 0				
	x + 3 = 2 - 3 $x = 2 - 3$ $y = $ $y = $ $y =$			$k^{2} - 9 = 0$				
	x - 2 - 0 0y			12 -00				
	$ \mathbf{x} = -1 $ $\mathbf{y} =$	$\frac{0}{2}$		$\sqrt{\mathbf{k}^2} = \pm \sqrt{9}$				
				$\mathbf{k} = \pm 3$				
-	<u>y</u> =	= 2						
25.	Find A^{-1} if A		27.	What is the cofactor of 3 in				
23.								
722 727	[5 3]	THIS	DA CC	matrix. 2 5 6				
Sol.	$\mathbf{A} = \begin{vmatrix} 5 & 3 \\ 1 & 1 \end{vmatrix}$		BIPUP	$\begin{bmatrix} 1 & 4 & 8 \end{bmatrix}$				
				$\begin{bmatrix} 3 & 1 & -4 \end{bmatrix}$				
	$ A = \begin{vmatrix} 5 & 3 \\ 1 & 1 \end{vmatrix} =$	= 5 - 3 = 2	Sol.	$\begin{bmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \end{bmatrix}$				
	4 4		Part	1 4 8				
	Adj A = $\begin{bmatrix} 1\\ -1 \end{bmatrix}$	-3		Here: $3 = a_{11}$, so				
	$A^{-1} = \frac{Adj(A)}{ A }$.)		Minor of $3 = M_{11}$				
	A = - A			$= \begin{vmatrix} 5 & 6 \\ 4 & 8 \end{vmatrix} = 40 - 24 = \boxed{16}$				
	15) 15) 28 28			4 8				
				Cofactor of $3 = C_{11}$				
				$=(-1)^{1+1} M_{11} = (-1)^{2} (16) = 16$				
			I	(1) (1) (1) (1)				

EDUGATE Up to Date Solved Papers 18 Applied Mathematics-I (MATH-113) Paper B					
Section - II	Q.5.(a) For what value of m the vector				
Note : Attemp any three (3) questions	$4\underline{I} + 2\underline{J} - 3\underline{K}$ and $\underline{m}\underline{I} - \underline{J} + \sqrt{3}\underline{K}$				
Q.2.(a) The hypotenuse of a right t is 10cm and its height is twic base. Find the area of triangl	have same magnitude. Sol. See Q.3 of Ex # 8.1 (Page # 371)				
 Sol. See Q.1 of Ex # 10 (Page # 46) (b) The diagonals of a rhombus a 80cm and 60cm respectively. 	Find unit vector perpendicular to each if $\vec{a} = \underline{i} + \underline{j} + \underline{k}$ and $\vec{b} = 2\underline{i} + 3\underline{j} - \underline{k}$				
	the area and length of each side.Sol.See $Q.19(i)$ of $Ex # 8.2$ (Page # 388See $Q.5$ of $Ex # 11$ (Page # 476)Q.6.(a) Find the inverse of				
 Q.3.(a) The area of regular octagon room is 51sq.cm. Find the lease its side. Sol. See Q.1 of Ex # 12 (Page # 48) (b) The axis of an ellipse are 40c 60cm. Find its perimeter and 50l. See Q.9 of Ex # 13 (Page # 49) Q.4. Find area of the field whose ordinates are 0, 20, 22.5, 33. 42, 33.5, 25.5 and 0 meter respectively. The width of ease strip is 14m. Find also the approximate cost of purchase field at a cost of Rs. 5,000/per sq.m. 	al al al al al al al $\begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 4 \\ 0 & 2 & 2 \end{bmatrix}$ 6) m and area. 9) 5, 45, ch mg the $\begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 4 \\ 0 & 2 & 2 \end{bmatrix}$ Sol. See Q.4(iii) of Ex # 9.3 (Page # 440) (b) Use Cramer's rule to solve the system of equations. 3x - 4y = -2 x + y = 6 Sol. See Q.8(ii) of Ex # 9.2 (Page # 429) ************************************				
Sol. See example # 03 of $Ch # 14$					