EDUGATE Up to Date Solved Papers 1 Applied Mathematics-I (MATH-123) Paper A

DAE/IA-2016

MATH-123 APPLIED MATHEMATICS-I PAPER 'A' PART - A (OBJECTIVE)

Time: 30 Minutes

Q.1: Encircle the correct answer.

- The factors of $x^2 7x + 12 = 0$ 1. are:
 - [a] (x-4)(x+3)
 - [b] (x-4)(x-3)
 - [c] (x+4)(x+3)
 - [d] (x+4)(x-3)
- $\ell x^2 + mx + n = 0$ will be a pure 2. quadratic if:
 - [a] $\ell = 0$
- [b] n = 0
- [c] m = 0 [d] Both ℓ , m = 0
- The sum of the roots of 3.

$$\mathbf{a}\mathbf{x}^2 - \mathbf{b}\mathbf{x} + \mathbf{c} = \mathbf{0} + \mathbf{s}$$

- [a] $-\frac{c}{a}$
- [c] $-\frac{b}{a}$ [d] $\frac{b}{b}$
- The number of terms in the 4. expansion of $(a + b)^{13}$ are:
 - [a] 12 [b] 13 [c] 14 [d] 15
- The value of $\binom{n}{n}$ is equal to: 5.
 - [a] 0
- [b] 1
- [c] n
- [d] -n
- The middle term of $\left(\frac{\mathbf{x}}{\mathbf{v}} \frac{\mathbf{y}}{\mathbf{x}}\right)^4$ is: 6.
 - [a] 6
- [c] $\frac{4x^2}{y^2}$ [d] $\frac{4x}{y}$
- 7. If an arc of a circle has length 'Z' and subtend an angle '0' then 'r' will be:

- [a] $\frac{\theta}{\ell}$
- [b] $\frac{\ell}{\Theta}$
- [c] $\ell\theta$
- [d] $\ell + \theta$
- $\sec^2 \theta + \cos ec^2 \theta$ is equal to: 8.
 - [a] $\sec^2\theta \csc^2\theta$
 - [b] $\sin \theta \cos \theta$
 - [c] $-\cos\theta$
- [d] $2\cos ec^2\theta$
- $\cos(\pi + \theta)$ is equal to: 9.
 - [a] $\cos \theta$
- $[b] \sin \theta$
- $[c] \cos \theta$
- **[d]** $\sin \theta$
- 10. sin 2\alpha is equal to:
 - [a] $\cos^2 \alpha \sin^2 \alpha$
 - [b] $\cos 2\alpha$
 - [c] $1 \cos^2 \alpha$ [d] $2\sin \alpha \cos \alpha$
- When angle of elevation is viewed by an observer the object is:
 - [a] Above
- [b] Below
- [c] At the same level
- [d] None of these
- 12. In right triangle if one angle is 45° then the other will be:
 - [a] 45°
- **[b]** 50°
- [c] 60°
- [d] 75°
- Unit vector of $\mathbf{i} + \mathbf{j} + \mathbf{k}$ is: 13.

 - [a] $\underline{i} + \underline{j} + \underline{k}$ [b] $\frac{1}{2}(\underline{i} + \underline{j} + \underline{k})$
 - [c] $\frac{1}{\sqrt{3}}(\underline{i} + \underline{j} + \underline{k})$ [d] $\frac{1}{2}(\underline{i} + \underline{j} + \underline{k})$
- $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}|$ is area of the figure called: 14.
 - [a] Triangle
- [b] Rectangle
- [c] Sector
- [d] Parallelogram
- The value of i3 E is: 15.

[a]
$$jE$$
 [b] $-jE$ [c] E [d] $-E$

Answer Key

1	b	2	\mathbf{c}	3	d	4	С	5	b
6	a	7	b	8	a	9	C	10	d
11	a	12	a	13	c	14	d	15	b

EDUGATE Up to Date Solved Papers 2 Applied Mathematics-I (MATH-123) Paper A

DAE/IA-2016

MATH-123 APPLIED MATHEMATICS-I PAPER 'A' PART-B(SUBJECTIVE)

Time:2:30Hrs

Marks:60

Section - I

- Q.1. Write short answers to any Eighteen (18) questions.
- 1. Solve the equation $x^2 3x = 2x 6$ by using quadratic formula.

Sol.
$$x^2 - 3x = 2x - 6$$

 $x^2 - 3x - 2x + 6 = 0$
 $x^2 - 5x + 6 = 0$
Here: $a = 1, b = -5, c = 6$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(6)}}{2(1)}$$

$$x = \frac{5 \pm \sqrt{25 - 24}}{2} = \frac{5 \pm \sqrt{1}}{2} = \frac{5 \pm 1}{2}$$

Either OF

$$x = \frac{5+1}{2}$$
 $x = \frac{5-1}{2}$ $x = \frac{4}{2} = 2$

$$S.S. = \{2, 3\}$$

2. Discuss the nature of the roots of the equation

$$x^2 - 2\sqrt{2}x + 2 = 0$$

Sol. Here: a = 1, $b = -2\sqrt{2}$, c = 2Disc. $= b^2 - 4ac$ $= (-2\sqrt{2})^2 - 4(2)(1) = 8 - 8 = 0$

Hence roots are Equal and Real.

- 3. Prove that the roots of the equation $(a + b)x^2 ax b = 0$ are rational.
- Sol. Here: A = (a + b), B = -a, C = -bDisc. $= B^2 - 4AC$ $= (-a)^2 - 4(a + b)(-b)$ $= a^2 + 4ab + 4b^2$ $= (a + 2b)^2$ Which is a perfect square.

Hence roots are Rational. Proved.

4. Find the sum and product of the roots of the equation

$$9x^2 + 6x + 1 = 0$$

Here: a = 9, b = 6, c = 1

Sum of Roots $3 = -\frac{b}{a} = -\frac{6}{a} = \boxed{-\frac{2}{a}}$

Product of Roots

$$P = \frac{c}{a} = \boxed{\frac{1}{9}}$$

5. Form the quadratic equation whose roots are $i\sqrt{3}$ and $-i\sqrt{3}$

Sol.
$$S = i\sqrt{3} + (-i\sqrt{3})$$

$$S = i\sqrt{3} - i\sqrt{3}$$

$$S = 0$$

$$P = (i\sqrt{3})(-i\sqrt{3})$$

$$P = -(i)^{2}(\sqrt{3})^{2}$$

$$P = -(-1)(3) = 3$$

$$x^{2} - Sx + P = 0$$

$$x^{2} - 0x + 3 = 0 \Rightarrow \boxed{x^{2} + 3 = 0}$$

6. Expand $(2x-3y)^4$ by Binomial theorem.

EDUGATE Up to Date Solved Papers 3 Applied Mathematics-I (MATH-123) Paper A

7. Calculate $(1.04)^5$ by binomial theorem up to two decimal places.

Sol.
$$(1.04)^5 = (1+0.04)^5$$

$$= {5 \choose 0} (1)^5 (0.04)^0 + {5 \choose 1} (1)^4 (0.04)^1 + {5 \choose 2} (1)^3 (0.04)^2 + \dots$$

$$= (1)(1)(1) + 5(1)(0.04) + 10(1)(0.0016) + \dots$$

$$= 1 + 0.2 + 0.016 + \dots = 1.2160 = 1.22$$

8. Expand $(1+2x)^{-2}$ to three terms.

Sol.
$$(1+2x)^{-2}$$

= $1+(-2)(2x)+\frac{(-2)(-2-1)}{2!}(2x)^2+...$
= $1-4x+\frac{(-2)(-3)}{2}(4x^2)+...$
= $1-4x+12x^2+...$

9. Which will be the middle term in the expansion of $\left(x + \frac{3}{x}\right)^{15}$

$$\begin{aligned} & \text{Sol.} \quad As \quad n = 15 \text{ (Odd), so} \\ & \text{Middle terms} = \left(\frac{n+1}{2}\right)^{\text{th}} + \left(\frac{n+3}{2}\right)^{\text{th}} \text{ terms.} \\ & \text{Middle terms} = \left(\frac{15+1}{2}\right)^{\text{th}} + \left(\frac{15+3}{2}\right)^{\text{th}} \text{ terms.} \end{aligned}$$

Middle terms = $8^{th} + 9^{th}$ terms.

Hence T_8 & T_9 are two middle terms.

10. Find the 5th term in the

expansion of
$$\left(2x-\frac{x^2}{4}\right)^7$$

Sol. Here:
$$a = 2x$$
, $b = -\frac{x^2}{4}$, $n = 7$ & $r = 4$
$$T_{r+1} = \binom{n}{r} a^{n-r} b^r \Rightarrow T_{4+1} = \binom{7}{4} (2x)^{7-4} \left(-\frac{x^2}{4}\right)^4$$

$$T_{\scriptscriptstyle 5} = \! \left(35\right)\! \left(8x^3\right)\! \left(\! \frac{x^8}{256}\right) \! \Rightarrow \! \left[\! T_{\scriptscriptstyle 5} = \! \frac{35}{32}x^{11}\right]$$

11. Convert $22\frac{1}{2}$ ° into radian measure.

Sol.
$$22\frac{1}{2}$$
° = 22.5 ° = 22.5 ° × $\frac{\pi}{180}$ = $\boxed{0.39\,\mathrm{rad}}$

- 12. Find the radius of the circle,
 when £ = 8.4cm, 0 = 2.8 rad, r=?
- **Sol.** We know that: $\ell = r\theta$

$$\Rightarrow \mathbf{r} = \frac{\ell}{\theta} = \frac{8.4}{2.8} = \boxed{3 \text{ cm}}$$

13. Find 'x' if

 $\tan^2 45^{\circ} - \cos^2 60^{\circ} = x \sin 45^{\circ} \cos 45^{\circ} \tan 60^{\circ}$

Sol. $\tan^2 45^\circ - \cos^2 60^\circ = x \sin 45^\circ \cos 45^\circ \tan 60^\circ$

$$(1)^2 - \left(\frac{1}{2}\right)^2 = x\left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{2}}{2}\right)(\sqrt{3})$$

$$1 - \frac{1}{4} = \mathbf{x} \left(\frac{2\sqrt{3}}{4} \right) \Rightarrow \frac{4 - 1}{4} \times \frac{4}{2\sqrt{3}} = \mathbf{x}$$

$$\frac{3}{2\sqrt{3}} = x \quad \Rightarrow \quad \boxed{x = \frac{\sqrt{3}}{2}}$$

14. Prove that:

$$\cos^4\theta - \sin^4\theta = 1 - 2\sin^2\theta$$

Sol. L.H.S. = $\cos^4 \theta - \sin^4 \theta$

$$= (\cos^2 \theta)^2 - (\sin^2 \theta)^2$$

$$= (\cos^2 \theta - \sin^2 \theta)(\cos^2 \theta + \sin^2 \theta)$$

$$= (1 - \sin^2 \theta - \sin^2 \theta)(1)$$

$$=1-2\sin^2\theta$$
 = R.H.S. **Proved.**

15. Prove that: $\cos(-\beta) = \cos\beta$

Sol. As, $\cos(\alpha-\beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$

Put $\alpha = 0$, we have:

$$\cos(0-\beta) = \cos(0)\cos\beta + \sin(0)\sin\beta$$

$$\cos\left(-\beta\right) = 1.\cos\beta + 0.\left(\sin\beta\right)$$

$$\cos(-\beta) = \cos\beta + 0$$

$$|\cos(-\beta) = \cos\beta|$$
 Proved.

EDUGATE Up to Date Solved Papers 4 Applied Mathematics-I (MATH-123) Paper A

- 16. Express $\sin x \cos 2x \sin 2x \cos x$ as single term.
- $\begin{aligned} &\text{Sol. } \sin x \cos 2x \sin 2x \cos x \\ &= \sin x \cos 2x \cos x \sin 2x \\ &= \sin \left(x 2x\right) \quad \because \left\{ \begin{smallmatrix} \sin(\alpha \beta) \\ -\sin\alpha\cos\beta \cos\alpha\sin\beta \end{smallmatrix} \right\} \end{aligned}$
- $= \sin(-x) = -\sin x$ 17. Prove that: $\sin^2 \alpha = \frac{1 \cos 2\alpha}{2}$
- Sol. Take $\cos 2\alpha = \cos (\alpha + \alpha)$ $\cos 2\alpha = \cos \alpha \cos \alpha - \sin \alpha \sin \alpha$ $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ $\cos 2\alpha = 1 - \sin^2 \alpha - \sin^2 \alpha$ $\cos 2\alpha = 1 - 2\sin^2 \alpha$ $\Rightarrow 2\sin^2 \alpha = 1 - \cos 2\alpha$ $\Rightarrow \sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$ Proved.
- 18. Express $\cos 12\theta + \cos 4\theta$ as product.
- Sol. $\cos 12\theta + \cos 4\theta$ = $2\cos\left(\frac{12\theta + 4\theta}{2}\right)\cos\left(\frac{12\theta - 4\theta}{2}\right)$ = $2\cos 8\theta\cos 4\theta$
 - 19. Given that, $\gamma = 90^{\circ}$, $\alpha = 35^{\circ}$, a = 5, find angle β .
- **Sol.** We know that in any triangle: $\alpha + \beta + \gamma = 180^{\circ}$ $\beta = 180^{\circ} \alpha \gamma$ $\beta = 180^{\circ} 35^{\circ} 90^{\circ} \Rightarrow \boxed{\beta = 55^{\circ}}$
- 20. Define angle of depression.
- **Sol.** If the line of sight is downward from the horizontal, the angle is called angle of Depression.
- 21. The shadow of Qutab Minar is 81m long when the measure of the angle of elevation of the sun is 41°31'. Find the height of the Qutab-Minar.

- Sol. From figure, we know that: $\tan 41^{\circ}31' = \frac{h}{81}$ $81 \tan 41^{\circ}31' = h$ h=71.70 m
 - 22. In any triangle ABC, if a = 5, c = 6, $a = 45^{\circ}$, then find y.
 - **Sol.** By using law of sines:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$
Here we take:
$$\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$$

$$5\sin \gamma = 6\sin 45^{\circ}$$

$$\sin \gamma = \frac{6\sin 45^{\circ}}{5} = 0.8485$$

$$\gamma = \sin^{-1}(0.8485) \Rightarrow \boxed{\gamma = 58^{\circ}3'}$$
23. Find the unit vector parallel to

- 23. Find the unit vector parallel to the sum of the vector,
 - $\vec{a} = [2, 4, -5]$ and $\vec{b} = [1, 2, 3]$
- **Sol.** Let $\vec{v} = \text{sum of the vectors}$ $\vec{a} \& \vec{b} = \vec{a} + \vec{b} = \begin{bmatrix} 2, 4, -5 \end{bmatrix} + \begin{bmatrix} 1, 2, 3 \end{bmatrix}$ $\vec{v} = \begin{bmatrix} 3, 6, -2 \end{bmatrix} = 3i + 6j 2k$ $|\vec{v}| = \sqrt{(3)^2 + (6)^2 + (-2)^2}$ $|\vec{v}| = \sqrt{9 + 36 + 4} = \sqrt{49} = 7$

Unit vector
$$= |\hat{\mathbf{v}}| = \frac{\vec{\mathbf{v}}}{|\vec{\mathbf{v}}|} = \frac{3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}}{7}$$

- **24.** Find $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b})$ if $\vec{a} = 2i + 2j + 3k \& \vec{b} = 2i j + k$
- **Sol.** $\vec{a} + \vec{b} = (2i + 2j + 3k) + (2i j + k)$ $\vec{a} + \vec{b} = 2i + 2j + 3k + 2i - j + k$ $\vec{a} + \vec{b} = 4i + j + 4k$ $\vec{a} - \vec{b} = (2i + 2j + 3k) - (2i - j + k)$ $\vec{a} + \vec{b} = 2i + 2j + 3k + 2i - j + k$ $\vec{a} + \vec{b} = 4i + j + 4k$

EDUGATE Up to Date Solved Papers 5 Applied Mathematics-I (MATH-123) Paper A

$$\begin{split} \vec{a} - \vec{b} &= \left(2i + 2j + 3k\right) - \left(2i - j + k\right) \\ \vec{a} - \vec{b} &= 2i + 2j + 3k - 2i + j - k = 3j + 2k \\ \left(\vec{a} + \vec{b}\right) \bullet \left(\vec{a} - \vec{b}\right) &= \left(4i + j + 4k\right) \bullet \left(3j + 2k\right) \\ &= \left(4\right) \left(0\right) + \left(1\right) \left(3\right) + \left(4\right) \left(2\right) &= 0 + 3 + 8 = \boxed{11} \end{split}$$

25. Under what condition does the relation $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$ hold?

Sol. As,
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$$

$$\Rightarrow \qquad |\vec{a}| |\vec{b}| \cos \theta = |\vec{a}| |\vec{b}| \div \left\{ \begin{smallmatrix} \text{By Definition} \\ \vec{a}.\vec{b} = \vec{B} | |\vec{b}| \cos \theta \end{smallmatrix} \right\}$$

$$\Rightarrow \qquad \cos \theta = \frac{|\vec{a}| |\vec{b}|}{|\vec{a}| |\vec{b}|} \quad \Rightarrow \quad \cos \theta = 1$$

$$\Rightarrow \qquad \theta = \cos^{-1}\left(1\right) \quad \Rightarrow \quad \boxed{\theta = 0^{\circ}}$$

26. Express $\sqrt{3} + j$ in polar form.

Sol. Let
$$Z = \sqrt{3} + j$$

Here: $a = \sqrt{3}$ & $b = 1$

$$\begin{aligned} \mathbf{r} &= \sqrt{\mathbf{a}^2 + \mathbf{b}^2} \\ \mathbf{r} &= \sqrt{(\sqrt{3})^2 + (1)^2} \\ \mathbf{r} &= \sqrt{3 + 1} = \sqrt{4} = 2 \end{aligned} \quad \begin{aligned} \theta &= tan^{-1} \left(\frac{b}{a}\right) \\ \theta &= tan^{-1} \left(\frac{1}{\sqrt{3}}\right) = 30^{\circ} \\ \mathbf{z} &= \mathbf{r} \angle \theta = \boxed{2 \ \angle 30^{\circ}} \end{aligned}$$

27. Simplify the phasor $\frac{-9+j4}{8-j3}$ and

write the result in rectangular form.

Sol.
$$\frac{-9+j4}{8-j3}$$

$$= \frac{-9+j4}{8-j3} \times \frac{8+j3}{8+j3} = \frac{-72-j27+j32+j^212}{\left(8\right)^2-\left(j3\right)^2}$$

$$= \frac{-72+j5-12}{64+9} = \frac{-84+j5}{73} = \boxed{\frac{-84}{73}+j\frac{5}{73}}$$

Section - II

Note: Attemp any three (3) questions $3 \times 8 = 24$

Q.2.(a) Solve the equation.

$$\frac{a}{ax-1} + \frac{b}{bx-1} = a + b \text{ by}$$
 factorization.

Sol. See Q.1(ix) of Ex # 1.1 (Page # 10)

(b) Find the value of K given that if one root of $9x^2 - 15x + k = 0$, exceeds the other by 3. Also find the roots.

Sol. See Q.8 of Ex # 1.3 (Page # 48)

Q.3. Find the coefficient of x^5 in the expansion of $\left(2x^2 - \frac{3}{x}\right)^{10}$

Sol. See Q.5(i) of Ex # 2.1 (Page # 83)

Q.4.(a) If $m = \tan\theta + \sin\theta$ and $n = \tan\theta - \sin\theta, \text{ then prove that}$ $m^2 - n^2 = 4\sqrt{mn}$

Sol. See Q.22 of Ex # 3.3 (Page # 140)

(b) If $\cos = \frac{1}{5}$ and $\cos B = \frac{1}{2}$, A and B be acute angles, find $\cos (A - B)$

Sol. See Q.8 of Ex # 4.1 (Page # 162)

Q.5.(a) Prove that:

cos 20° + cos 100° + cos 140° - 0

Sol. See Q.13 (iv) of Ex# 4.3 (Page # 192)

(b) Solve the triangle ABC when $c=4,\ a=70^{\circ}\ and\ \gamma=45^{\circ}$

Sol. See Q.1 of Ex# 5.5 (Page # 232)

Q.6.(a) Find the magnitude and direction cosines of $3\overline{a} - 2\overline{b}$ if

Sol. $\vec{a} = 3\underline{i} - 2\underline{j} + 4\underline{k}$ and $\vec{b} = 2\underline{i} + \underline{j} + 3\underline{k}$ See Q.9(ii) of Ex#6.1 (Page # 250)

(b) Express $\frac{(3+2j)(5-3j)}{3-4j}$ in the form $\frac{3+ib}{3-4j}$

Sol. See Q.2(d) of Ex # 07 (Page # 282)