<u>EDU</u>	GATE Up to Date S	Solved Papers 1	Applied	d Ma	athe	mati	cs-l	(MA	<u>TH-1</u>	.13)	Pape	er A
DAE/IA-2016				[a] Zero [b] 1								
MATH-113 APPLIED MATHEMATICS-I]	c] n			[d] -n			
PAPER 'A' PART - A(OBJECTIVE)			8.	1	The f	racti	ons	is	$\frac{2x}{2} + 5$	+5 x+6	- kn	own
	e:30Minutes	Marks:15			is:							
Q.1:	Encircle the corr	cect answer.		Ĩ	a] Pr	ope	r	[b] Im	prop	er	
1.	A second degree	equation is			c] Bo							ese
	known as;		9.	ľ	f I =	1 2 cr	n an	dr=	3cm	ı, the	en θ	is
	[a] Linear [b] Q				qua					e.		
	[c] Cubic [d] N	SCIENCES SCIENCES SCIENCESCICE			a] 3			[b]4ra	ad		
2.	$\ell \mathbf{x}^2 + \mathbf{m}\mathbf{x} + \mathbf{n} = 0$ wil	l be a pure										
	quadratic if:	5-		I	c] $rac{1}{4}$	rad		[d] 18	rad		
	[a] $\ell = 0$ [b] n		10.	Ĩ	f sin	A is	nosi	tive	tan (A is r	iega	tive,
	[c] m = 0 [d] E	Soth $\boldsymbol{\ell}$, m = 0					-				120	
3.	3. The nth term of an A.P whose 1 st			then the terminal side of the angle lies in quadrant:							IIBIC	
	term is 'a' and comm	on difference	earn	1 C C C C C C C C C C C C C C C C C C C	a] 1°	Consection and	aura] 2 nd			
	is 'd' is:	Nay			c] 3 ^{re}							
	[a] $2a + (n+1)d$ [b] a	+ (n + 1)d	11.		\sec^2			See	76	ual 1	to:	
	[c] a + (n-1)d [d] 2	2a + (n - 1)d			a] se					See.		
4.	Geometric mean bet	ween 3 and 27			c] 2s	P						
	is:	$r / \Lambda \Lambda / /$	12.		sin (1000						
	[a] -9 [b] 12	2 / / /			< T							
	[c] 15 [d] <u>+</u> 9	€\ \ [∨] /			a] -							
5.	The sum of infinite g	eometric			c] -							
	annian 1, 1, 1, 1		13.		sin(cos c		$\frac{7}{6}$ is	equ	ual to):		
	series $1 + \frac{1}{3} + \frac{1}{9} + \dots$			11		2	-				 0	i
	$[2] \frac{2}{2}$ [b]	2	- 0	(()))5	a] ta							ł,
	[a] $\frac{2}{3}$ [b] –	3 76 BA	BAY	1	c] sir							
	[c] $\frac{3}{2}$ [d] –	3	14.		nat		_			= 70	<u>,</u>	
	2	2			∠ B =							
6.	In the expansion $(\mathbf{a} \cdot \mathbf{b})$	⊦b) ⁿ the		l	a] 3	0°		۵J] 40			
	general term is:			Ĩ	c] 5	0°		[d] 60	P		
	$[a] \binom{n}{r} a^r b^r$ $[b] \binom{1}{r}$	$n_{a^{n-r}b^r}$	15.	ľ	fB=	90º	b =	2, A	= 30)º, tł	nen s	ide
		$r \int a d b = 1$			a' is;			3				
	(n)			[a] 4			[b] 3			
	$[\mathbf{c}] \binom{n}{r-1} a^{n-r+1} b^{r-1}$			[c] 2			[d] 1			
						A	nswe	er Ke	y			
	$[d] \binom{n}{r} a^{n-r-1} b^{r-1}$		1	b	2		3	c	4	d	5	c
	(-)		6	b	7	b	8	a	9	u b	10	b
7.	The value of $\binom{n}{n}$ is e	equal to:	11	10000	12	d d	° 13	a b	9 14		10	d
	(n) 13 (a		hermon		2		C	lanna i	u
		1		* *	***	. * *	* * *	***	. * * 1	~ * *	* *	

EDUGATE Up to Date Solved Papers 2 Applied Mathematics-I (MATH-113) Paper A						
	DAE/IA-2016	4.	Define common difference.			
MATH-113 APPLIED MATHEMATICS-I		Sol.	The difference between any two			
PAPER 'A' PART - B (SUBJECTIVE)			consecutive terms of an A.P. is			
Time:	2:30Hrs Marks:60		called common difference.			
	Section - I	5.	Write the formula to find the sum of			
Q.1.	Write short answers to any		'n' terms of an arithmetic sequence.			
	Eighteen (18) questions.	0	n = 1			
1.	Solve the quadratic equation	Sol.	$\left \mathbf{S}_{n}=\frac{\mathbf{n}}{2}\left[2\mathbf{a}_{1}+\left(n-1\right)\mathbf{d}\right]\right $			
	x(x+7) = (2x-1)(x+4) by	6.	Find the 7 th term of A.P., in which			
	factorization.		the first term is 7 and the common			
Sol.	x(x+7) = (2x-1)(x+4)		difference is -3.			
	$x^{2} + 7x = 2x^{2} + 8x - x - 4$	Sol.	Here: $a_7 = ?$, $a_1 = 7$ & $d = -3$			
	$x^2 + 7x - 2x^2 - 8x + x + 4 = 0$		$a_7 = a + 6d$			
	$-x^2 + 4 = 0 \implies x^2 - 4 = 0$	earn "	$\mathbf{a}_{7} = 7 + 6(-3)$			
	$(x)^{2} - (2)^{2} = 0 \Rightarrow (x - 2)(x + 2) = 0$		$a_{7} = 7 + 6(-3)$ $a_{7} = 7 - 18 \implies \boxed{a_{7} = -11}$ Find the sum of the series			
	Either OR	7.	Find the sum of the series			
	$ \begin{array}{c} x - 2 = 0 \\ x = 2 \end{array} \qquad \qquad \begin{array}{c} x + 2 = 0 \\ x = -2 \end{array} $		121			
			$1 + \frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{100} + \frac{1}{1000} + $			
	$S.S. = \{-2, 2\}$. 1, 1			
2.	Prove that the roots of the equation	Sol.	Here: $a_1 = 1$, $r = \frac{1}{3} \div 1 = \frac{1}{3}$,			
	$(\mathbf{a} + \mathbf{b})\mathbf{x}^2 - \mathbf{a}\mathbf{x} - \mathbf{b} = 0$ are rational.		$n = 6 \& S_6 = ?$			
Sol.	Here: $A = (a + b), B = -a, C = -b$		$\begin{pmatrix} 1 \\ 1 \end{pmatrix}^6$			
	$Disc. = B^2 - 4AC$	S	$=\frac{\mathbf{a}(1-\mathbf{r}^{n})}{1-\mathbf{r}} \Rightarrow \mathbf{S}_{6}=\frac{1\left(1-\left(\frac{1}{3}\right)^{2}\right)}{1-\mathbf{r}}$			
	$=(-a)^{2}-4(a+b)(-b)$	BA	$1-r$ $1-\frac{1}{2}$			
	$=a^2+4ab+4b^2$		3 1 729_1			
	$=\left(a+2b ight)^{2}$ Which is a perfect square.	C	$1 - \frac{1}{729} = \frac{120 - 1}{729} = 728 \pm 3 = 364$			
	Hence roots are Rational. Proved.	3 ₆	$=\frac{1-\frac{1}{729}}{\frac{3-1}{3}}=\frac{\frac{729-1}{729}}{\frac{2}{3}}=\frac{728}{729}\times\frac{3}{2}=\boxed{\frac{364}{243}}$			
3.	Form the guadratic equation		3 3			
	whose roots are $i\sqrt{3}$ and $-i\sqrt{3}$	8.	Find the geometric mean between			
Cal C			8 and 72.			
301. D	$= \mathbf{i}\sqrt{3} + (-\mathbf{i}\sqrt{3}) \qquad \mathbf{P} = (\mathbf{i}\sqrt{3})(-\mathbf{i}\sqrt{3})$	Sol.	Let: $a = 8 \& b = 72$			
\mathbf{S}	$=i\sqrt{3}-i\sqrt{3}$ $P=-(i)^{2}(\sqrt{3})^{2}$		As, $G = \pm \sqrt{ab}$			
\mathbf{S}	= $i\sqrt{3} - i\sqrt{3}$ = 0 P = $-(i)^2(\sqrt{3})^2$ P = $-(-1)(3) = 3$		$G = \pm \sqrt{8 \times 72} = \pm \sqrt{576} = \pm 24$			
		9.	Find the sum of infinite geometric			
	$x^2 - Sx + P = 0$		series in which			
	$x^2 - 0x + 3 = 0 \Rightarrow \boxed{x^2 + 3 = 0}$		a = 128 and r = $-\frac{1}{2}$.			
			Ext was () was (

EDUGATE Up to Date Solved Papers 3 Applied Mathematics-I (MATH-113) Paper A

Sol.
$$S_{\infty} = \frac{a}{1-r}$$

$$S_{\infty} = \frac{128}{1-\left(-\frac{1}{2}\right)} = \frac{128}{1+\frac{1}{2}} = \frac{128}{\frac{2+1}{2}}$$

$$S_{\infty} = \frac{128}{\frac{3}{2}} = 128 \times \frac{2}{3} = \frac{256}{3}$$
10. Expand $(2x - 3y)^4$ by Binomial theorem.
Sol. $(2x - 3y)^4$

$$= \left(\frac{4}{0}\right)(2x)^4 (3y)^0 - \left(\frac{4}{1}\right)(2x)^3 (3y)^1 + \left(\frac{4}{2}\right)(2x)^2 (3y)^2$$

$$-\left(\frac{4}{3}\right)(2x)^1 (3y)^3 + \left(\frac{4}{4}\right)(2x)^0 (3y)^4$$

$$= (1)(16x^4)(1) - 4(8x^3)(3y) + 6(4x^2)(9y^2)$$

$$-4(2x)(27y^3) + (1)(1)(81y^4)$$

$$= \overline{16x^4 - 96x^3y + 216x^2y^2 - 216xy^3 + 81y^4}$$
11. Compute $(1.02)^4$ to two docimal places by use of Binomial formula.
Sol. $(1.02)^4 = (1 + 0.02)^4$

$$= \left(\frac{4}{0}\right)(1)^4 (0.02)^6 + \left(\frac{4}{1}\right)(1)^5 (0.02)^4 + \left(\frac{4}{2}\right)(1)^2 (0.02)^2 + \dots$$

$$= (1)(1)(1) + 4(1)(0.02) + 6(1)(0.0004) + \dots$$

$$= 1 + 0.08 + 0.0024 + \dots = 1.0824 = \overline{1.08}$$
12. Expand $\frac{1}{\sqrt{1 + x}}$ to three terms.
Sol. $\frac{1}{\sqrt{1 + x}} = (1 + x)^{-\frac{1}{2}}$

$$= 1 + \left(-\frac{1}{2}\right)(x) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)}{2!}(x)^2 + \dots$$

$$= 1 - \frac{x}{2} + \frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)x^2 + \dots$$

 $=\overline{1-\frac{x}{2}+\frac{3}{8}x^{2}+...}$

13. Find the 5th term in the expansion
of
$$\left(2x - \frac{x^2}{4}\right)^7$$

Sol. Here : $a = 2x, b = -\frac{x^3}{4}, n = 7 \& r = 4$
 $T_{r41} = {n \choose r} a^{n-r} b^r \Rightarrow T_{44} = {7 \choose 4} (2x)^{7-4} \left(-\frac{x^2}{4}\right)^4$
 $T_5 = (35)(8x^3)\left(\frac{x^8}{256}\right) \Rightarrow \overline{T_5} = \frac{35}{32}x^{11}$
14. Resolve into partial fractions
 $\frac{2x}{(x-2)(x+5)} = \frac{A}{x-2} + \frac{B}{x+5} \rightarrow (i)$
 $2x = A(x+5) + B(x-2) \rightarrow (ii)$
Put $x = 2$ in eq.(ii)
 $2(2) = A(2+5) + B(2-2)$
 $4 = A(7) + B(0)$
 $4 = 7A + 0 \Rightarrow \boxed{A = \frac{4}{7}}$
Put $x = -5$ in eq.(ii)
 $2(-5) = A(-5+5) + B(-5-2)$
 $-10 = A(0) + B(-7)$
 $-10 = 0 - 7B \Rightarrow \boxed{B = \frac{10}{7}}$
Put values of A, & B in eq.(i),
we get: $\boxed{\frac{4}{7(x-2)} + \frac{10}{7(x+5)}}$
15. Write an identity equation of
 $\frac{2x+5}{x^2+5x+6}$
 $= \frac{2x+5}{(x+2)(x+3)}$
 $= \boxed{\frac{A}{x+2} + \frac{B}{x+3}}$
 $x^2 + 5x + 6$
 $= x(x+3) + 2(x+3)$
 $= (x+3)(x+2)$

EDUGATE Up to Date Solved Papers 4 Applied Mathematics-I (MATH-113) Paper A

16.	Convert $rac{\pi}{2}$ rad into degree measure.		$\tan\left(-\theta\right) = \frac{0 - \tan\theta}{1 + (0)\tan\theta} \because \left\{ \begin{array}{c} \text{Using calculator} \\ \tan\theta = 0 \end{array} \right\}$
Sol.	$\frac{\pi}{2}$ rad $= \frac{\pi}{2} \times \frac{180^{\circ}}{\pi} = \frac{180^{\circ}}{2} = 90$		$\tan\left(-\theta\right) = \frac{-\tan\theta}{1+\theta}$
17.	Prove that:		$\tan(-\theta) = -\tan\theta$ Proved.
$\tan^2 30^\circ + \tan^2 45^\circ + \tan^2 60^\circ = \frac{13}{3}$		21.	Show that:
Sol.	L.H.S. = $\tan^2 30^\circ + \tan^2 45^\circ + \tan^2 60^\circ$		$\sin\left(\theta + \frac{\pi}{6}\right) + \cos\left(\theta + \frac{\pi}{3}\right) = \cos\theta$
=	$\left(\frac{1}{\sqrt{3}}\right)^2 + (1)^2 + (\sqrt{3})^2 = \frac{1}{3} + 1 + 3$	Sol.	L.H.S. = $\sin\left(\theta + \frac{\pi}{6}\right) + \cos\left(\theta + \frac{\pi}{3}\right)$
] = -	$\frac{1+3+9}{3} = \frac{13}{3} = R.H.S.$ Proved.		$=\sin(\theta+30^\circ)+\cos(\theta+60^\circ)$
	3 3		$=\sin\theta\cos30^\circ+\cos\theta\sin30^\circ$
18.	If a minute hand of a clock is 10cm long, how for does the tip of the	earn M	$+\cos\theta\cos 60^{\circ} - \sin\theta\sin 60^{\circ}$ $= \sin\theta\left(\frac{1}{2}\right) + \cos\theta\left(\frac{1}{2}\right)$
	hand moves in 30 minutes?		$(\sqrt{8})$ (1)
Sol.	Here: $\mathbf{r} = 10$ cm & $\ell = ? \begin{pmatrix} e & e \\ e & e \end{pmatrix}$		$= \sin \theta \left[\frac{1}{2} \right] + \cos \theta \left[\frac{1}{2} \right]$
	θ = hand moves in 30 minutes		
	15/11/1		
	$=180^{\circ}=180\times\frac{\pi}{180}=\pi$ rad		$+\cos\theta\left(\frac{1}{2}\right) - \sin\theta\left(\frac{1}{2}\right)$
	By using formula: $\ell = r\theta$		$=\frac{\cos\theta}{2}+\frac{\cos\theta}{2}$
	$\ell = \mathbf{r} \boldsymbol{\Theta} = (10) \pi = 31.4 \mathrm{cm}$		
19.	Prove that:		$=2.\frac{\cos\theta}{2}=\cos\theta=\text{R.H.S.}$ Proved.
	1 John A	22.	$E_{x press} \sin x \cos 2x - \sin 2x \cos x$
	$(1+\sin\theta)(1-\sin\theta)=\frac{1}{\sec^2\theta}$	BILLIN	as single term.
Sol.	L.H.S. = $(1 + \sin \theta)(1 - \sin \theta)$	Sol.	$\sin x \cos 2x - \sin 2x \cos x$
	$(1)^2$ $(-1)^2$ $(-1)^2$ $(-1)^2$	2013 EVEN PERSON PERSON	$= \sin x \cos 2x - \cos x \sin 2x$
	$= (1)^{2} - (\sin \theta)^{2} = 1 - \sin^{2} \theta$		$= \sin \left(x - 2x \right) \because \left\{ \begin{smallmatrix} \sin(\alpha - \beta) \\ -\sin \alpha \cos \beta - \cos \alpha \sin \beta \end{smallmatrix} \right\}$
	$=\cos^2\theta=rac{1}{\sec^2\theta}=R.H.S.$ Proved.		$=\sin(-x)=\overline{-\sin x}$
20.	Prove that: $tan(-\beta) = -tan\beta$	23.	Express 2 cos 50 sin 30 as sum of
Sol.	$\Delta \alpha \tan(\alpha - \beta) = \tan \alpha - \tan \beta$	No. of Contraction	difference.
501.	As, $\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$	Sol.	$2\cos 5\theta \sin 3\theta$
	Put $\alpha = 0$ & $\beta = \theta$ we have:		$=\sin(5 heta+3 heta)-\sin(5 heta-3 heta)$
	$\tan(0-\theta) = \frac{\tan 0 - \tan \theta}{1 + \tan 0 \tan \theta}$		$=$ $\sin 8\theta - \sin 2\theta$
	$1 + \tan \theta \tan \theta$	-	
		24.	Define the law of Sine.

EDUGATE Up to Date Solved Papers 5 Applied Mathematics-I (MATH-113) Paper A

Sol. In any triangle ABC, with usual notations.

 $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$

- 25. In right triangle ABC, γ = 90°, a = 5, c = 13 then find value of angle ∝.
- Sol. We know that, from figure:

$$\sin \alpha = \frac{a}{c} \implies \sin \alpha = \frac{5}{13}$$

$$\alpha = \sin^{-1} \left(\frac{5}{13} \right)$$

$$\alpha = 22^{\circ} 37'$$

$$\alpha = 22^{\circ} 37'$$

26. In any triangle ABC in which b = 45, c = 34, $\infty = 52^{\circ}$, find a.

Sol. By using Law of cosines: $a^{2} = b^{2} + c^{2} - 2bc \cos 52^{\circ}$ $a^{2} = (45)^{2} + (34)^{2} - 2(45)(34)\cos 52^{\circ}$ $a^{2} = 2025 + 1156 - 1883.92$ $a^{2} = 1297.07 \implies a = 36.01$ 27. A ctring of a flying kito is 200

- 27. A string of a flying kite is 200 meters long, and its angle of elevation is 60°. Find the height of the kite above the ground taking the string to be fully stretched.
- Sol. In this figure: $\sin 60^\circ = \frac{h}{200}$ $200 \sin 60^\circ = h$ $\boxed{h = 173.20 \text{ m}}$ 60°

Section - II

Note : Attemp any three (3) questions $3 \times 8 = 24$

Q.2.(a) Solve the equation

$$\label{eq:constraint} \begin{split} x^2 + x(m-n)x - 2(m-n)^2 &= 0 \\ \text{by using Quadratic formula.} \end{split}$$

- **Sol.** See Q.3(v) of Ex # 1.1 (Page # 22)
- (b) If the roots of the equation

 $px^{2} + qx + q = 0$ are α and β prove that $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{q}{p}} = 0$ See Q.6 of Ex # 1.3 (Page # 46) Sol. Q.3.(a) If 5,8 are two A.M's between a and b. find a and b. See Q.6 of Ex # 2.2 (Page # 85) Sol. How many terms of the series (b) 5 + 7 + 9 + Amount to 1922 See Q.5(ii) of Ex # 2.3 (Page # 92) Sol. Q.4.(a) Find the constant term in the expansion of $\left(x^2 - \frac{1}{x}\right)^9$ See Q.9(i) of Ex # 3.1 (Page # 160) Resolve $\frac{1}{x^3+1}$ into partial (b) fractions. See Q.4 of Ex # 4.3 (Page # 207) Sol. Q.5.(a) Prove that $(\sec\theta - \tan\theta)^2 = \frac{I - \sin\theta}{I + \sin\theta}$ See Q.5 of Ex # 5.3 (Page # 255) Sol. (b) Prove that $\frac{\sin 3\theta}{\cos \theta} + \frac{\cos 3\theta}{\sin \theta} = 2 \cot 2\theta$ See Q.14 of Ex # 6.2 (Page # 301) Sol. Q.6.(a) Express sin 30 + sin 50 + sin 70 + sin 90 as product. See Q.3 of Ex # 6.3 (Page # 307) Sol. (b) Find the angle of largest measure in the triangle ABC where a = 224, b = 380 and c = 340. See Q.6(i) of Ex # 7.5 (Page # 356) Sol.
