DAE/IA-2016/08 FIRST YEAR MATH-123 APPLIED MATHEMATICS – I COMMON WITH BIO MEDICAL, COMPUTER, COMPUTER INFORMATION, ELECTRICAL, ELECTRONICS, FOOD, FOOD PROCESSING & PRESERVATION, INFORMATION & COMMUNICATION, INSTRUMENT, INSTRUMENTATION, MECHATRONICS AND TELECOMMUNICATION TECHNOLOGIES.

PAPER 'A'	(Subjective)
SECTI	ON - T

Time: 2:30 Hours

Q.1: Write short answer to any Eighteen (18) questions: -

- **1.** Solve $x^2 3x = 2x 6$ by using Quadratic formula.
- **2.** Discuss the nature of the roots of the equation $x^2 2\sqrt{2}x + 2 = 0$.
- **3.** Prove that the roots of the equation $(a+b)x^2 ax b = 0$ are rational.
- **4.** Find the sum and product of the roots of the equation $9x^2 + 6x + 1 = 0$.
- **5.** Form the quadratic equations whose roots are $i\sqrt{3}$, $-i\sqrt{3}$.
- **6.** Expand $(2x 3y)^4$ by Binomial theorem.
- **7.** Calculate $(1.04)^5$ by Binomial theorem up to two decimal places.
- **8.** Expand $(1+2x)^{-2}$ to three terms.

9. Which will be the middle term/terms in the expansion of $\left(x + \frac{3}{x}\right)^{15}$.

- **10.** Find 5th term in the expansion of $\left(2x \frac{x^2}{4}\right)$
- **11.** Convert $22\frac{1}{2}^{\circ}$ into radian measure.
- **12.** Find the radius of a circle when $\ell = 8.4$ cm, $\theta = 2.8$ rad.
- **13.** Find 'x' if $\tan^2 45^\circ \cos^2 60^\circ = x \sin 45^\circ \cos 45^\circ \tan 60^\circ$.
- **14.** Prove that $\cos^4 \theta \sin^4 \theta = 1 2 \sin^2 \theta$.
- **15.** Prove that: $\cos(-\beta) = \cos\beta$.
- **16.** Express $\sin x \cos 2x \sin 2x \cos x$ as single term.

17. Prove that: $\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$

- **18.** Express $\cos 12\theta + \cos 4\theta$ as product.
- **19.** Given that $\gamma = 90^{\circ}$, $\alpha = 35^{\circ}$, a = 5, find angle β .
- **20.** Define angle of depression.
- **21.** The shadow of Qutab-Minar is 81m long when the measure of the angle of elevation of the sun is $41^{\circ}31'$. Find the height of the Qutab-Minar.
- **22.** In any triangle ABC in which a = 5, c = 6, $\alpha = 45^{\circ}$, find γ .
- **23.** Find a unit vector parallel to the sum of the vectors: $\vec{a} = [2, 4, -5], \ \vec{b} = [1, 2, 3]$
- **24.** Find $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b})$ if $\vec{a} = 2i + 2j + 3k$, $\vec{b} = 2i j + k$.
- **25.** Under what condition does the relation $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$ hold.
- **26.** Express $\sqrt{3} + j$ in polar form.

27. Simplify the phasor $\frac{-9+j4}{8-j3}$ and write the result in Rectangular form.

Marks: 60

 $18 \times 2 = 36$

SECTION - II

Note: Attempt any three (03) questions.

Q.2: (a) Solve the equation $\frac{a}{ax-1} + \frac{b}{bx-1} = a + b$ by factorization.

(b) Find the value of k given that if one root of $9x^2 - 15x + k = 0$ exceeds the other by 3. Also find the roots.

Q.3: Find the coefficient of ' x^5 ' in the expansion of $\left(2x^2 - \frac{3}{x}\right)^{10}$.

- **Q.4:** (a) If $m = tan\theta + sin\theta$ and $n = tan\theta sin\theta$ then prove that: $m^2 n^2 = 4\sqrt{mn}$.
 - (b) If $\cos A = \frac{1}{5}$ and $\cos B = \frac{1}{2}$, where A and B be acute angles, find the value of $\cos(A B)$.
- **Q.5:** (a) Prove that: $\cos 20^\circ + \cos 100^\circ + \cos 140^\circ = 0$
 - (b) Solve the triangle ABC when c = 4, $\alpha = 70^{\circ}$, $\gamma = 42^{\circ}$.
- **Q.6:** (a) Given the vectors $\vec{a} = 3i 2j + 4k \& \vec{b} = 2i + j + 3k$, Find the magnitude and direction cosines of $3\vec{a} 2\vec{b}$.

(b) Express
$$\frac{(3+2j)(5-3j)}{3-4j}$$
 in the form $a+jb$.

$3 \times 8 = 24$