9.9 Special Matrices:

1. Transpose of a Matrix

If $A = [a_{ij}]$ is mxn matrix, then the matrix of order n x m obtained by interchanging the rows and columns of A is called the transpose of A. It is denoted A^t or A'.

Example if
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
, then $A^{t} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$

2. Symmetric Matrix:

A square matrix A is called symmetric if $A = A^t$ for example if

$$A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}, \quad \text{then} \quad A^t = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix} = A$$

Thus A is symmetric

3. Skew Symmetric:

A square matrix A is called skew symmetric if $A = -A^{t}$

for example if
$$B = \begin{bmatrix} 0 & -4 & 1 \\ 4 & 0 & -3 \\ -1 & 3 & 0 \end{bmatrix}$$
, then
$$B^t = \begin{bmatrix} 0 & 4 & -1 \\ -4 & 0 & 3 \\ 1 & -3 & 0 \end{bmatrix} = (-1) \begin{bmatrix} 0 & -4 & 1 \\ 4 & 0 & -3 \\ -1 & 3 & 0 \end{bmatrix}$$
$$B^t = -B$$

Thus matrix B is skew symmetric.

4. Singular and Non-singular Matrices:

A square matrix A is called singular if |A|=0 and is non-singular if $|A|\neq 0$, for example if

$$A = \begin{bmatrix} 3 & 2 \\ 9 & 6 \end{bmatrix}$$
, then $|A| = 0$, Hence A is singular

and if
$$A = \begin{bmatrix} 3 & 1 & 6 \\ -1 & 3 & 2 \\ 1 & 0 & 0 \end{bmatrix}$$
, then $|A| \neq 0$,

Hence A is non-singular.

Example: Find k If
$$A = \begin{bmatrix} k-2 & 1 \\ 5 & k+2 \end{bmatrix}$$
 is singular Solution: Since A is singular so $\begin{vmatrix} k-2 & 1 \\ 5 & k+2 \end{vmatrix} = 0$

$$(k-2)(k+2) - 5 = 0$$

$$k^2 - 4 - 5 = 0$$

$$k^2 - 9 = 0 \Rightarrow K = \pm 3$$

5. Adjoint of a Matrix:

Let $A = (a_{ij})$ be a square matrix of order n x n and (c_{ij}) is a matrix obtained by replacing each element aii by its corresponding cofactor cii then $(c_{ii})^{t}$ is called the adjoint of A. It is written as adj. A.

For example, if

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

Cofactor of A are:

$$A_{11} = 5,$$
 $A_{12} = -2,$ $A_{13} = +1$ $A_{21} = -1,$ $A_{22} = 2,$ $A_{23} = -1$ $A_{31} = 3,$ $A_{32} = -2,$ $A_{33} = 3$

Matrix of cofactors is

$$C = \begin{bmatrix} 5 & -2 & +1 \\ -1 & 2 & -1 \\ 3 & -2 & 3 \end{bmatrix}$$

$$C^{t} = \begin{bmatrix} 5 & -1 & 3 \\ -2 & 2 & -2 \\ +1 & -1 & 3 \end{bmatrix}$$

Hence adj
$$A = C^t$$
 =
$$\begin{bmatrix} 5 & -1 & 3 \\ -2 & 2 & -2 \\ +1 & -1 & 3 \end{bmatrix}$$

Note: Adjoint of a 2×2 Matrix:

The adjoint of matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is denoted by adjA is defined as

$$adjA = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

6. Inverse of a Matrix:

If A is a non-singular square matrix, then $A^{-1} = \frac{\text{adj } A}{|A|}$

For example if matrix $A = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$

Then adj $A = \begin{bmatrix} 2 & -4 \\ -1 & 3 \end{bmatrix}$

$$|A| = \begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix} = 6 - 4 = 2$$

Hence $A^{-1} = \frac{\text{adj } A}{|A|} = \frac{1}{2} \begin{bmatrix} 2 & -4 \\ -1 & 3 \end{bmatrix}$

Alternately:

For a non singular matrix A of order $(n \times n)$ if there exist another matrix B of order $(n \times n)$ Such that their product is the identity matrix I of order $(n \times n)$ i.e., AB = BA = I

Then B is said to be the inverse (or reciprocal) of A and is written as $B = A^{\text{-}1}$

Example 9: If $A = \begin{bmatrix} 1 & -3 \\ -2 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix}$ then show that AB = BA = I and therefore, $B = A^{-1}$

Solution:

$$AB = \begin{bmatrix} 1 & -3 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and
$$BA = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ -2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Hence $AB = BA = I$
and therefore $B = A^{-1} = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix}$

Example 10: Find the inverse, if it exists, of the matrix.

$$\mathbf{A} = \begin{bmatrix} 0 & -2 & -3 \\ 1 & 3 & 3 \\ -1 & -2 & -2 \end{bmatrix}$$

Solution:

$$|A| = 0 + 2(-2 + 3) - 3(-2 + 3) = 2 - 3$$

 $|A| = -1$, Hence solution exists.

Cofactor of A are:

$$\begin{array}{lll} A_{11}=0, & A_{12}=1, & A_{13}=1 \\ A_{21}=2, & A_{22}=-3, & A_{23}=2 \\ A_{31}=3, & A_{32}=-3, & A_{33}=2 \end{array}$$

Matrix of transpose of the cofactors is

adj
$$A = C' = \begin{bmatrix} 0 & 2 & 3 \\ -1 & -3 & -3 \\ 1 & 2 & 2 \end{bmatrix}$$

So

$$A^{-1} = \frac{1}{|A|} \operatorname{adj} A = \frac{1}{-1} \begin{bmatrix} 0 & 2 & 3 \\ -1 & -3 & -3 \\ 1 & 2 & 2 \end{bmatrix}$$
$$A^{-1} = \begin{bmatrix} 0 & -2 & -3 \\ 1 & 3 & 3 \\ -1 & -2 & -2 \end{bmatrix}$$

9.11 Solution of Linear Equations by Matrices:

Consider the linear system:

It can be written as the matrix equation

$$\begin{bmatrix} a_{11} & a_{12} & ----- & a_{1n} \\ a_{21} & a_{22} & ------ & a_{2n} \\ & & & & \\ a_{n1} & a_{n2} & ------ & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ & & \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ & & \\ b_n \end{bmatrix}$$

$$Let \qquad A = \begin{bmatrix} a_{11} & a_{12} & ----- & a_{1n} \\ a_{21} & a_{22} & ------ & a_{2n} \\ & & & \\ &$$

Then latter equation can be written as,

$$AX = B$$

If $B \neq 0$, then (1) is called non-homogenous system of linear equations and if B = 0, it is called a system of homogenous linear equations.

If now $B \neq 0$ and A is non-singular then A^{-1} exists.

Multiply both sides of AX = B on the left by A^{-1} , we get

$$A^{-1}(AX) = A^{-1}B$$

 $(A^{-1}A)X = A^{-1}B$
 $1X = A^{-1}B$
Or $X = A^{-1}B$

Where A^{-1} B is an n x 1 column matrix. Since X and A^{-1} B are equal, each element in X is equal to the corresponding element in A^{-1} B. These elements of X constitute the solution of the given linear equations.

If A is a singular matrix, then of course it has no inverse, and either the system has no solution or the solution is not unique.

Example 11: Use matrices to find the solution set of

$$x + y - 2z = 3$$

 $3x - y + z = 5$
 $3x + 3y - 6z = 9$

Solution:

Let
$$A = \begin{bmatrix} 1 & 1 & -2 \\ 3 & -1 & 1 \\ 3 & 3 & -6 \end{bmatrix}$$
Since
$$|A| = 3 + 21 - 24 = 0$$

Hence the solution of the given linear equations does not exists.

Example 12: Use matrices to find the solution set of

$$4x + 8y + z = -6$$

 $2x - 3y + 2z = 0$
 $x + 7y - 3z = -8$

Solution:

Let
$$A = \begin{bmatrix} 4 & 8 & 1 \\ 2 & -3 & 2 \\ 1 & 7 & -3 \end{bmatrix}$$
Since
$$|A| = -32 + 48 + 17 = 61$$
So
$$A^{-1} \text{ exists.}$$

$$A^{-1} = \frac{1}{|A|} \text{ adj } A$$

$$= \frac{1}{61} \begin{bmatrix} -5 & 31 & 19 \\ 8 & -13 & -16 \\ 17 & -20 & -28 \end{bmatrix}$$

Now since,

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{61} \begin{bmatrix} -5 & 31 & 19 \\ 8 & -13 & -16 \\ 17 & -20 & -28 \end{bmatrix} \begin{bmatrix} -6 \\ 0 \\ -8 \end{bmatrix}$$

$$= \frac{1}{61} \begin{bmatrix} 30 + 152 \\ -48 + 48 \\ -102 + 224 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix}$$

Hence Solution set: $\{(x, y, z)\} = \{(-2, 0, 2)\}$

Exercise 9.3

Q.1 Which of the following matrices are singular or non-singular.

(i)
$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & -2 \\ 0 & 1 & -1 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 1 & 2 & -1 \\ -3 & 4 & 5 \\ -4 & 2 & 6 \end{bmatrix}$$
 (iii)
$$\begin{bmatrix} 1 & 1 & -2 \\ 3 & -1 & 1 \\ 3 & 3 & -6 \end{bmatrix}$$

Q.2 Which of the following matrices are symmetric and skew-symmetric

(i)
$$\begin{bmatrix} 2 & 6 & 7 \\ 6 & -2 & 3 \\ 7 & 3 & 0 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 0 & 3 & -5 \\ -3 & 0 & 6 \\ 5 & -6 & 0 \end{bmatrix}$$
 (iii)
$$\begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$$

Q.3 Find K such that the following matrices are singular

(i)
$$\begin{vmatrix} K & 6 \\ 4 & 3 \end{vmatrix}$$
 (ii) $\begin{vmatrix} 1 & 2 & -1 \\ -3 & 4 & K \\ -4 & 2 & 6 \end{vmatrix}$ (iii) $\begin{vmatrix} 1 & 1 & -2 \\ 3 & -1 & 1 \\ k & 3 & -6 \end{vmatrix}$

Q.4 Find the inverse if it exists, of the following matrices

(i)
$$\begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 0 & -2 & -3 \\ 1 & 3 & 3 \\ -1 & -2 & -2 \end{bmatrix}$$
 (iii)
$$\begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 4 \\ 0 & 2 & 2 \end{bmatrix}$$
 (iv)
$$\begin{bmatrix} 1 & 2 & -1 \\ -3 & 4 & 5 \\ -4 & 2 & 6 \end{bmatrix}$$

Find the solution set of the following system by means of matrices: Q.5

(i)
$$2x-3y=-1$$
 (ii) $x+y=2$ (iii) $x-2y+z=-1$ $x+4y=5$ $2x-z=1$ $3x+y-2z=4$ $y-z=1$

(iv)
$$-4x + 2y - 9z = 2$$
 (v) $x + y - 2z = 3$
 $3x + 4y + z = 5$ $3x - y + z = 0$
 $x - 3y + 2z = 8$ $3x + 3y - 6z = 8$

Answers 9.3

- Non-singular Q.1Singular (i) (ii)
 - Singular (iii)
- Q.2 Symmetric Skew-symmetric (i) (ii) (iii) Symmetric
- Q.3 5 3 (i) 8 (ii)(iii)

Q.4 (i)
$$\begin{bmatrix} \frac{1}{7} & \frac{3}{7} \\ \frac{2}{7} & \frac{1}{-7} \end{bmatrix}$$
 (ii) $\begin{bmatrix} 0 & 2 & 3 \\ -1 & -3 & -3 \\ 1 & 2 & 2 \end{bmatrix}$ (iii) $\begin{bmatrix} \frac{4}{5} & -\frac{1}{5} & -\frac{4}{5} \\ -\frac{1}{5} & -\frac{1}{5} & \frac{7}{10} \\ \frac{1}{5} & \frac{1}{5} & -\frac{1}{5} \end{bmatrix}$

- (iv) A⁻¹ does not exist.
- (i) $\{(1, 1)\}$ Q.5 (ii) (v) (ii) $\{(1, 1, 1)\}$ (iii) $\{(1, 1, 0)\}$
 - (iv) $\{(7, -3, -4)\}$ no solution

Summary

- 1. If $A = [a_{ij}]$, $A = [b_{ij}]$ of order m x n. Then $A + B = [a_{ij} + b_{ij}]$ is also m x n order.
- 2. The product AB of two matrices A and B is conformable for multiplication if No of columns in A = No. of rows in B.
- 3. If $A = [a_{ij}]$ is m x n matrix, then the n x m matrix obtained by interchanging the rows and columns of A is called the transpose of A. It is denoted by A^t .
- 4. Symmetric Matrix:

A square matrix A is symmetric if $A^t = A$.

5. If
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 Then,

$$\text{(i)} \qquad \text{adj } A = \begin{bmatrix} c_{11} & c_{21} & c_{31} \\ c_{12} & c_{22} & c_{32} \\ c_{13} & c_{23} & c_{33} \end{bmatrix} \text{, a}_{ij} \text{ are the co-factor elements.}$$

And inverse of A is:

(ii)
$$A^{-1} = \frac{adj A}{|A|}$$

6. A square matrix A is singular if |A| = 0.