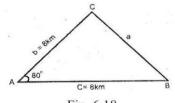

Chapter 7		183	Solution of triangle		
5.	c = 31.06	6.	b= 181.89		
7.	c = 12.68	8.	b = 449.22		
9.	a = 69.13	10.	0.7319		
11.	1578.68, 1654.46m				

7.5 The Law of Cosines:

This law states that "the square of any sides of a triangle is equal to the sum of the squares of the other two sides minus twice their product times the cosine of their included angle. That is

Let β be an acute angle of $\triangle ABC$, draw $CD \perp AB$ Let AD = m and CD = hIn right triangle BCD, we have $(BC)^2 = (BD)^2 + (CD)^2$ $a^2 = (BD)^2 + h^2$ (1) If α is an acute angle, then from (i) In right triangle ACD, $Sin \alpha = \frac{h}{b} \implies h = b Sin \alpha$ and $Cos \alpha = \frac{m}{b} \implies m = b Cos \alpha$ So, $BD = c - m = c - b cos \alpha$ Putting the values of h and BD in equation (1) $a^2 = (c - b cos \alpha)^2 + (b sin \alpha)^2$ $= c^2 - 2bc cos \alpha + b^2 cos^2 \alpha + b^2 sin^2 \alpha$ $= c^2 - 2bc cos \alpha + b^2 (cos^2 \alpha + sin^2 \alpha)$


(i)

Proof:

 $\frac{=c^2-2bc\,\cos\alpha+b^2}{a^2=b^2+c2-2bc\,\cos\alpha}$ If α in an obtuse angle, then from fig (ii) (ii) In right triangle ACD, $\sin\left(180-\alpha\right)=\frac{n}{b}$ $\sin \alpha = \frac{h}{b} \implies h = b \sin \alpha$ and $\cos(180 - \alpha) = \frac{m}{h}$ $-\cos \alpha = \frac{m}{b} \implies m = -b \cos \alpha$ $BD = c + m = c - b \cos \alpha$ So. Putting the values of h and BD in equation (1) $a^2 = (c - b \cos \alpha)^2 + (b \sin \alpha)^2$ we get, $a^2 = b^2 + c^2 - 2bc \cos \alpha$ Similarly we obtain $b^2 = a^2 + c^2 - 2ac \cos \beta$ $c^2 = b^2 + c^2 - 2bc \cos \alpha$ and Also when three sides are given, we find $\cos \alpha = \frac{b^2 + c^2 - a^2}{2b^2}$, $\cos \beta = \frac{a^2 + c^2 - b^2}{2c^2}$ and $\cos \gamma = \frac{a^2 + b^2 - c^2}{2ab}$ Note: we use the cosine formula, when Two sides and their included angle are given. (i) (ii) When the three sides are given. **Example 1**: In any by using the law of cosines $a = 7, c = 9, \beta = 112^{0}$ Find b Solution: By law of cosines b^2 $=a^2+c^2-2ac\cos\beta$ $b^{2} = (7)^{2} + (9)^{2} - 2(7)(9) \cos 112^{\circ}$ = 49 + 81 - 126(.3746) $b^{2} = 130 + 47.20 = 177.2$ = 13.31b Example 2: Two man start walking at the same time from a cross road, both walking at 4 km/hour. The roads make an angle of measure 80° with each other. How far apart will they be at the end of the two hours?

Solution: Let, A be the point of starting of two man V = 4 km/hour Distance traveled by two men after 2 hours = vt

= 4 x 2 = 8km Thus, we have to find BC = a = ? By law of cosine: $a^2 = b^2 + c^2 - 2bc \cos \alpha$ $a^2 = (8)^2 + (8)^2 - 2(8)(8) \cos 80^\circ = 128 - 128 (0.1736)$ $a^2 = 105.77 \implies a = 10.28 \text{ km}$ Thus, two men will apart 10.28 km after two hours.

Exercise 7.4

In any triangle ABC by using the law of cosines:

1.	a = 56	c = 30	$\beta = 35^{\circ}$ Find b
2.	b = 25	c = 37	$\alpha = 65^{\circ}$ Find a
3.	b = 5	c = 8	$\alpha = 60^{\circ}$ Find a
4.	a = 212	c = 135	$\beta = 37^{\circ} \ 15'$ Find b
5.	a = 16	b = 17	$\gamma = 25^{\circ}$ Find c
6.	a = 44	b = 55	$\gamma = 114^{\circ}$ Find c
7.	a = 13	b = 10	$c = 17$ Find α and β

- 8. Three villages P, Q and R are connected by straight roads. Measure PQ is 6 km and the measure QR is 9km. The measure of the angle between PQ and QR is 120°. Find the distance between P and R.
- 9. Two points A and B are at distance 55 and 32 meters respectively from a point P. The measure of angle between AP and BP is 37°. Find the distance between B and A.
- 10. Find the cosine of the smallest measure of an angle of a triangle with 12, 13 and 14 meters as the measures of its sides.

Answers 7.4

1.	b = 35.83	2.	a = 34.83		3.	a =7
4.	b = 132.652	5.	c = 7.21		6.	c = 83.24
7.	$\alpha = 49^{o} \ 40' \ 47''$		$\beta = 35^{\circ} 54' 30''$			
8.	13.08km	9.	35.18m	10.	52° 37'	