
7.4 Law of Sines:

In any triangle, the length of the sides are proportional to the sines of measures of the angle opposite to those sides. It means

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

Proof: Let one angle of the triangle say β be acute, then γ will be either acute, obtuse or right as in figure 1, 2, 3.

Draw AD \perp BC or BC produced. Then from \triangle ABC (for all figures)

$$\frac{AD}{AB} = \sin\beta$$
 $\therefore AD = c\sin\beta$ (1)

If
$$\gamma$$
 is acute in figure (1) $\frac{AD}{AC} = \sin \gamma$ $\Rightarrow AD = b \sin \gamma$

If
$$\gamma$$
 is obtuse in figure (2) $\frac{AD}{AC} = \sin (180 - \gamma) = \sin \gamma$
 $\Rightarrow AD = b \sin \gamma$

If
$$\gamma$$
 is right in figure (3) $\frac{AD}{AC} = 1 = \sin 90^{\circ} = \sin \gamma$
 $AD = b \sin \gamma$

In each case we have

$$AD = b \sin \gamma \dots (2)$$

From (1) & (2), we have

It can similarly be proved that:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$
, Similarly, $\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$

Hence,

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

This is known as law of sines.

Note: we use sine formula when

one side and two angles are given

ii. two sides and the angle opposite one of them are given

Example 1:

In any
$$\triangle$$
 ABC $a = 12$, $b = 7$, $\alpha = 40^{\circ}$ Find β

Solution:

By law of sines
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

$$\Rightarrow \frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{12}{\sin 40^{\circ}} = \frac{7}{\sin \beta}$$

$$\Rightarrow \sin \beta = \frac{7\sin 40^{\circ}}{12} = \frac{7(0.6429)}{12}$$

$$\sin \beta = 0.3750$$

$$\Rightarrow \beta = \sin^{-1}(.3750) \Rightarrow \beta = 22^{\circ}1'$$

Example 2:

In any \triangle ABC, b = 24, c = 16 Find the ratio of Sin β to Sin γ

Solution:

By law of sines

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

$$\Rightarrow \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} \Rightarrow \frac{\sin \beta}{\sin \gamma} = \frac{b}{c} = \frac{24}{16} = \frac{3}{2}$$

Example 3:

A town B is 15 km due North of a town A. The road from A to B runs North 27°, East to G, then North 34°, West to B. Find the distance by road from town A to B.

Solution:

Given that: C = 15 km $\alpha = 24^{\circ}$, $\beta = 34^{\circ}$ We have to find

Distance from A to B by road. Since $\alpha + \beta + \gamma = 180^{\circ}$ $\Rightarrow 27^{\circ} + 34^{\circ}$

Since
$$\alpha + \beta + \gamma = 180^{\circ}$$
 \Rightarrow $27^{\circ} + 34^{\circ} + \gamma = 180^{\circ}$
 $\gamma = 119^{\circ}$

By law of sines:

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

$$\Rightarrow \frac{a}{\sin\alpha} = \frac{c}{\sin\gamma} \Rightarrow a = \frac{\sin\alpha}{\sin\gamma}$$

$$a = \frac{15\sin 27^{\circ}}{\sin 119^{\circ}} = \frac{15(0.4539)}{0.8746} = 7.78$$
Fig. 7.16

Also
$$\frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$
 $\Rightarrow \frac{b}{\sin 34^{\circ}} = \frac{15}{\sin 119^{\circ}}$
 $b = \frac{15 \sin 34^{\circ}}{\sin 119^{\circ}} = \frac{15(0.5592)}{0.8746} = 9.59$

Thus distance from A to B by road:

$$= b + a = 9.59 + 7.78$$
 = 17.37km

Exercise 7.3

In any triangle ABC if:

Q1.	a = 10	b = 15	$\beta = 50^{\circ}$ Find α
Q2.	a = 20	c = 32	$\gamma = 70^{\circ}$ Find α
Q3.	a = 3	b = 7	β = 85° Find α
Q4.	a = 5	c = 6	α = 45° Find γ
Q5.	$a = 20\sqrt{3}$	$\alpha = 75^{\circ}$	$\gamma = 60^{\circ}$ Find c
Q6.	a = 211.3	$\beta = 48^{\circ}16^{\prime}$	$\gamma = 71^{\circ} 38^{\prime} \text{ Find b}$
Q 7 .	a = 18	$\alpha = 47^{\circ}$	$\beta = 102^{\circ}$ Find c
Q8.	a = 475	$\beta = 72^{\circ}15'$	$\gamma = 43^{\circ} 30^{\prime}$ Find b
Q9.	a = 82	$\beta = 57^{\circ}$	$\gamma = 78^{\circ}$ Find a
Q10.	$\alpha = 60_{\rm o}$	$\beta = 45^{\circ}$ Find the ratio of b to c	

Q11. Two shore batteries at A and B, 840 meters apart are firing at a target C. The measure of angle ABC is 80° and the measure of angle BAC is 70°. Find the measures of distance AC and BC.

Answers 7.3

1.
$$\alpha = 30^{\circ} 42^{f} 37^{ff}$$
 2. $\alpha = 35^{\circ} 37^{f} 58^{ff}$
3. $\alpha = 25^{\circ} 16^{f} 24^{ff}$ 4. $\gamma = 58^{\circ} 3^{f}$