7.3 Angle of Elevation and Depression:

If O be the eye of the observer, Q the position of the object and OP a horizontal line through O then:

- i. If Q be above OP, then <POQ is called angle of elevation is shown in Figure (1)
- ii. If Q be below OP, then <POQ is called angle of depression is shown in Figure (2)

Example 1:

Find the distance of man from the foot of tower 100m high if the angle of elevation of its top as observed by the man is 52° 30′.

Solution:

Let, A be the position of man and B be the foot of tower BC. Height of tower = BC = 100m in right \triangle AB

$$Tan 52^{\circ} 32' = \frac{BC}{AB}$$

$$1.3032 = \frac{100}{AB} \Rightarrow AB = \frac{100}{1.3032} = 78.73m$$

$$AB = \text{distance of man from the}$$

$$\text{foot of tower} = 76.73m$$

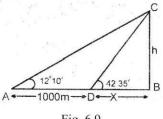
$$Fig. 6.8$$

Example 2:

From the two successive positions on the straight road 1000 meters apart man observes that the angle of elevation of the top a directly ahead of him are of 12° 10′ and 42° 35′. How high is the tower above the road.

Solution:

Let, A and D be the two successive positions of a man on the road. AD = 1000m (Given)


Let BC = height of tower = h = ?

And DB = xm

In AABC

$$\tan 12^{\circ} 10' = \frac{BC}{AB}$$

$$0.2156 = \frac{h}{(x+1000)}$$

$$h = 0.2156 (x + 1000) \dots (1)$$

In $\triangle DBC$

$$\tan 42^{o} 35' = \frac{BC}{DB} = \frac{h}{x}$$

$$0.9190 = \frac{h}{x}$$

$$x = \frac{h}{0.9190}$$
Put in (1)
$$h = 0.2156 \left[\frac{h}{0.9190} + 100 \right]$$

$$h = \frac{0.2156}{0.9190} h + \frac{(0.2156)(100)}{0.9190}$$

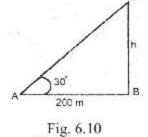
$$h = 0.2346h + 215.6$$

$$h = 0.2346h = 2156$$

$$0.7654h = 215.6$$

$$h = \frac{2156}{7654} = 28.168$$

Example 3:


Measure of the angle of elevation of the top of a flag staff observed from a point 200 meters from its foot is .

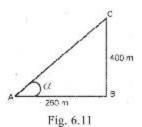
Solution:

Let height of flog staff = BC = h = ?

$$A = point of observation$$

In right $\triangle ABC$

$$\tan 30^{\circ} = \frac{h}{200} \Rightarrow h = 200 (0.577)$$



Example 4:

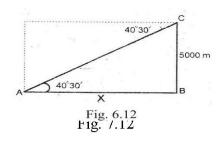
Find the measures of the angle of elevation of the top of a tree 400 meters high, when observed from a point 250 meters away from the foot of the base.

Solution: Given that:

Height of tree =
$$BC = 400m$$

 $AB = 250m$
Let
 $\angle BAC = \alpha = ?$

∠BAC= angle of elevation of top of the tree


$$\tan \alpha = \frac{BC}{AB} = \frac{400}{250} = 1.6$$
 $\alpha = \tan^{-1} (1.6) = 58^{\circ}$

Example 5:

The measure of the angle of depression of an airport as observed by a pilot while flying at a height of 5000 meters is 40° 32′. How far is the pilot from a point directly over the airport?

Solution:

The pilot is at the height of C
BC = 5000m
From right
$$\angle$$
ABC
 $\tan 40^{\circ} 32' = \frac{5000}{x}$
 $x = \frac{5000}{\tan 40^{\circ} 32'} = \frac{5000}{0.8551} = 584736m$

Example 6: From a point on the ground the measure of angle of elevation of the top of tower is 30°. On walking 100 meters towards the tower the measure of the angle is found to be of 45°. Find the height of the tower.

Solution:

Let BC = height of tower
= h = ?
And DB = x m
AD = 100 m
AB = 100 + x
In right
$$\triangle$$
 ABC
Tan30° = $\frac{BC}{AB}$

$$\frac{1}{\sqrt{3}} = \frac{h}{100 + x}$$

$$100 + x = \sqrt{3} h \dots (1)$$
In right \triangle BDC
tan $45^\circ = \frac{h}{x}$

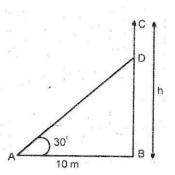
$$1 = \frac{h}{x}$$

$$x = h \dots (2)$$
Put $x = h$ in (1)

$$100 + h = \sqrt{3} h$$

$$1.7321h - h = 100$$

Fig. 6.13


$$h = \frac{100}{0.7321} = 136.60 \,\mathrm{m}$$

Example 7:

A pole being broken by the wind, its top struck ground at an angle of 30° and at a distance of 10m from the foot of the pole. Find the whole height of the pole.

Solution:

Let BC = h = height of pole = ?
AD = CD
In right
$$\triangle$$
 ABD
Tan30° = $\frac{BD}{10}$
BD = 10tan30° = 10(0.5774) = 5.77m
Also

 $\cos 30^{\circ} = \frac{AB}{AD} \Rightarrow AD = \frac{10}{\cos 30^{\circ}} = \frac{10}{0.8660} = 11.55 \text{m}$

Height of pole = h = BD + AD

$$\therefore$$
 AD = CD

h = 11.55 + 5.77 = 17.32m

Exercise 7.2

- Q1. How far is a man from the foot of tower 150 meters high, if the measure of the angle of elevation of its top as observed by him is 40° 30′.
- Q2. The shadow of a building is 220 meters when the measure of the angle of elevation of the sun is 35°. Find the height of the building.
- Q3. The measure of the angle of elevation of a kite is 35. The string of the kite is 340 meters long. If the sag in the string is 10 meters. Find the height of the kite.
- Q4. A man 18dm. tall observes that the angle of elevation of the top of a tree at a distance of 12m from the man is 32⁰. What is the height of the tree?
- Q5. On walking 300 meters towards a tower in a horizontal line through its base, the measure of the angle of elevation of the top changes from 30° to 60°. Find the height of the tower.
- Q6. The measure of the angle of elevation of the top of a cliff is 25. On walking 100 meters straight towards the cliff, the measure of the angle of elevation of the top is 48°. Find the height of the cliff.

- Q7. From two points A and B. 50 meters apart and in the line with a tree, the measures of the angles of elevation of the top of the tree are 30° and 40° respectively. Find the height of the tree.
- Q8. Two men on the opposite sides of a tower observe that the measures of the angles of elevation of the tower as observed by them separately are 15° and 25° respectively. If the height of the tower is 150 meters. Find the distance between the observers.
- Q9. From a light-house, angles of depression of two ships on opposite of the light-house are observed to be 30° and 45°. If the height of the light house be 300m. Find the distance between the ships of the line joining them passes through foot of light-hosue.
- Q10. The measure of angle elevation of the top of a tower is 30° from a point on the ground. On retreating 100 meters, the measure of the angle of elevation is found to be 15°. Find the height of the tower.
- Q11. From the top of a hill 200 meters high, the angles of depression of the top and bottom of a tower are observed to be 30° and 60° respectively. Find the height of the tower.
- Q12. A television antenna is on the roof of a building. From a point on the ground 36m from the building, the angle of elevation of the top and the bottom of the antenna are 51° and 42° respectively. How tall is the antenna?
- Q13. A ladder 20 meter long reaches the distance of 20 meters, from the top of a building. At the foot of the ladder the measure of the angle of elevation of the top of the building is 60°. Find the height of the building.
- Q14. A man standing on the bank of a canal observes that the measure of the angle of elevation of a tree is 60°. On retreating 40m from the bank, he finds the measure the angle of elevation of the tree as 30°. Find the height of the tree and the width of the canal.
- Q15. Two buildings A and B are 100m apart. The angle of elevation from the top of the building A to the top of the building B is 20° . The angle of elevation from the base of the building B to the top of the building A is 50° . Find the height of the building B.

Answers 7.2

(1)	175.63m	(2)	154.05m	(3)	h = 189.29 m
(4)	9.6m	(5)	h = 259.81m	(6)	h = 80.37m
(7)	h = 17.10m	(8)	881.58m	(9)	819.6m
(10)	49.98m	(11)	133.3m	(12)	12.1m
(13)	h = 30m	(14)	34.64m; 201	m (15) 155.5 m