5.14 Graph of Trigonometric Functions:

In order to graph a function = f(x), we give number of values of x and obtain the corresponding values of y. The several ordered pairs (x, y) are obtained we plotted these points by a curve we get the required graph.

5.14.1 Graph of Sine Let,
$$y = Sinx$$
 where, $0^{\circ} \le x \le 360^{\circ}$ where, $0 \le x \le 2\pi$

1. Variations

Quadrants

	1st	2nd	$3^{\rm rd}$	4 th
X	0 to 90°	90° to 180°	180° to 270°	270° to 360°
Sinx	+ ve,	+ ve,	-ve,	-ve,
	Increase	decrease from	decrease	Increases
	from 0 to 1	1 to 0	from 0 to -1	from -1 to 0

2. Table:

X	0	30°	60°	90°	120°	150°	180°
Sinx	0	0.5	0.87	1	0.87	0.5	0

X	210°	240°	270°	300°	330°	360°
Sinx	-0.50	87	-1	87	5	0

3. **Graph in Figure (5.19):**

Fig. 4.19

5.14.2 Graph of Cosine

Let, y = Cosx where,
$$0^{\circ} \le x \le 360^{\circ}$$

Or where, $0 \le x \le 2\pi$

1. Variations

Quadrants

	1st	2nd	3 rd	4 th
X	0 to 90°	90° to 180°	180° to 270°	270° to 360°
y = Cosx	+ ve,	– ve,	-ve,	+ ve,
	decrease	decrease from	increase	increases
	from 1 to 0	0 to -1	from -1 to 0	from 0 to 1

2. Table:

X	0	30°	60°	90°	120°	150°	180°
y = Cosx	1	0.87	0.5	0	-0.5	-0.87	-1

X	210°	240°	270°	300°	330°	360°
y = Cosx	-0.87	-0.5	0	0.5	0.87	1.

3. **Graph in Figure (5.20):**

5.14.3 Graph of tanx

Let, $y = \tan x$ where, $0^{\circ} \le x \le 360^{\circ}$

Or where, $0 \le x \le 2\pi$

1. Variations

Quadrants

		NO. 100 TO 100 T	(7)	
	1^{st}	2nd	3rd	4 th
X	0 to 90°	90° to 180°	180° to 270°	270° to 360°
y = tanx	+ ve,	-ve,	+ ve,	-ve,
	Increase	increase	increase	increases from
	from 0 to ∝	from $-\infty$ to 0	from 0 to ∞	$-\infty$ to 0

2. Table:

X	0	30°	60°	90°	120°	150°	180°
y = tanx	0	0.58	1.73	8	-1.73	-0.58	0

X	210°	240°	270°	300°	330°	360°
y = tanx	+ .58	1.73	$-\infty$, $+\infty$	-1.73	-2.58	0

3. **Graph in Figure (5.21):**

Fig. 4.21

5.14.4 Graph of Cotx:

Let, $y = \cot x$

where, $0^{\circ} \le x \le 360^{\circ}$

1. Variations

Quadrants

	1^{st}	2nd	3rd	4 th
X	0 to 90°	90° to 180°	180° to 270°	270° to 360°
y = Cotx	+ ve,	-ve,	+ ve,	-ve,
1400	Increase	increase	increase	increases from
	from ∝ to 0	from $0 \text{ to} - \infty$	from ∝ to 0	$0 \text{ to} - \infty$

2. Table:

X	0	30°	60°	90°	120°	150°	180°
y = Cotx	oc	1.73	0.58	0	-0.58	-1.73	18

X	210°	240°	270°	300°	330°	360°
y = Cotx	1.73	0.58	0	-0.58	-1.73	œ

3. Graph in Figure (5.22):

Fig. 4.22

5.14.5 Graph of Secx:

Let, y = secx

where, $0^{\circ} \le x \le 360^{\circ}$

1. Variations

Quadrants

	1^{st}	2nd	3rd	4 th
X	0 to 90°	90° to 180°	180° to 270°	270° to 360°
y = Secx	+ ve,	-ve,	-ve,	+ ve,
W-70	Increase	increase	increase	increases from
	from 1 to∝	from − ∞ to	from -1 to	- ∝ to 1
		-1	- ∞	

2. Table:

X	0	30°	60°	90°	120°	150°	180°
y = Secx	1	1.15	2	+ \pi	-2	1.15	1

X	210°	240°	270°	300°	330°	360°
y = Secx	-1.15	-2	∞c	2	1.15	1

3. Graph in Figure (5.23):

Fig. 4.23

5.14.6 Graph of Cosecx:

Let,
$$y = Cosecx$$

where,
$$0^{\circ} \le x \le 360^{\circ}$$

1. Variations

Quadrants

	1^{st}	2nd	3rd	4 th
X	0 to 90°	90° to 180°	180° to 270°	270° to 360°
y =	+ ve,	+ ve,	-ve,	– ve,
Cosecx	Increase	increase	increase	increases from
	from ∝ to 1	from 1 to ∝	from $-\infty$ to	-1 to $-\infty$
			-1	

2. Table:

X	0	30°	60°	90°	120°	150°	180°
y =	∞c	2	1.15	1	1.15	2	oc
Cosecx							

X	210°	240°	270°	300°	330°	360°
y = Cosecx	-2	-1.15	-1	-1.15	-2	- ∞

3. Graph in Figure (5.24):

Fig. 5.24

Exercise 5.4

- Q.1 Draw the graph of tan 2A as A varies from 0 to π .
- Q.2 Plot the graph of $1 \sin x$ as x varies from 0 to 2π .
- Q.3 Draw the graphs for its complete period.

(i)
$$y = \frac{1}{2} \sin 2x$$
 (ii) $y = \sin 2x$ (iii) $y = \frac{1}{2} \cos 2x$

Summary

Trigonometry means measurement of triangles.

1. Radian is an angle subtended at the center of a circle by an arc of the circle equal in length to its radius.

i.e.
$$\pi$$
 Radian = 180 degree
1 rad = 57° 17′ 45"
1 degree = 0.01745 radian

- 2. Length of arc of the circle, $l = s = r\theta$
- 3. Trigonometric functions are defined as:

$$Sin\theta = \frac{AP}{OP}, Cosec\theta = \frac{OP}{AP}$$
 $Cos\theta = \frac{OA}{OP}, Sec\theta = \frac{OP}{OA}$
 $tan\theta = \frac{AP}{OA}, Cot\theta = \frac{OA}{AP}$

Fig. 4.25

- 4. Relation between trigonometric ratios:
 - (i) $\operatorname{Sec}\theta = \frac{1}{\operatorname{Cos}\theta}$ (ii) $\operatorname{Cose}c\theta = \frac{1}{\operatorname{Sin}\theta}$ (iii) $\operatorname{Cos}\theta = \frac{1}{\operatorname{In}\theta}$ (iv) $\operatorname{Cos}\theta = \frac{1}{\operatorname{Sec}\theta}$ (v) $\operatorname{Sin}\theta = \frac{1}{\operatorname{Cose}c\theta}$ (vi) $\tan\theta = \frac{1}{\operatorname{Cot}\theta}$

(vii)
$$\sin^2\theta + \cos^2\theta = 1$$
 (viii) $\sec^2\theta = 1 + \tan^2\theta$

(ix)
$$\operatorname{Cosec}^2\theta = 1 + \operatorname{Cot}^2\theta$$

5. Signs of the trigonometric functions in the Four Quadrants.

Quadrant	I	II	III	IV
Positive	All +ve	Sinθ,	$\tan\theta$, $\cot\theta$	Cosθ,
		$Cosec\theta$		Secθ
Negative	Nil	Cosθ	Cosθ	Sinθ
		Sec θ	Secθ	Cosecθ
		tanθ	$Sin\theta$	tanθ
		Cotθ	$Cosec\theta$	Cotθ