(iv) 
$$\frac{3(3^n-1)}{2}$$

2. 
$$n = 6$$

3. (i) 
$$\frac{1}{3} \left[ n - \frac{1}{9} \left( 1 - \frac{1}{10^n} \right) \right]$$
 (ii)  $\frac{1}{3} \left[ \frac{10(10^n - 1)}{9} - n \right]$ 

(iii) 
$$\frac{1}{(1-x)} \left[ \frac{1-r^n}{1-r} - \frac{x(1-r^n x^n)}{1-rx} \right]$$

4. 62 5. 26.76 6. 
$$\frac{4085}{2}$$
 7.  $\sqrt{3}$ ;  $\frac{\sqrt{3}(3\sqrt{3}-1)}{\sqrt{3}-1}$ 

# 2.14 Infinite Geometric Sequence:

A geometric sequence in which the number of terms are infinite is called as infinite geometric sequence.

For example:

(i) 
$$2, \frac{4}{3}, \frac{8}{9}, \frac{16}{27}, \dots$$

### **Infinite Series:**

as

Consider a geometric sequence a, ar, ar<sup>2</sup>, ----- to n terms.

Let  $S_n$  denote the sum of n terms then  $S_n = a + ar + ar^2 + \dots - \dots$  to n terms.

Formula 
$$S_n = \frac{a(1-r^n)}{1-r} |r| < 1$$

Taking limit as  $n \rightarrow \infty$  on both sides

$$\begin{split} \underset{n \to \infty}{\text{limit }} S_n &= \underset{n \to \infty}{\text{limit }} \ a \frac{(1-r^n)}{1-r} \\ &= \underset{n \to \infty}{\text{limit }} \ a \left[ \frac{1}{1-r} - \frac{r^n}{1-r} \right] \\ &= \underset{n \to \infty}{\text{limit }} \left( \frac{a}{1-r} \right) - \underset{n \to \infty}{\text{limit }} \frac{ar^n}{1-r} \\ n \to \infty, \, r^n \to 0 \end{split}$$

Therefore 
$$S \infty = \frac{a}{1-r} - 0$$

$$\mathbf{S} \infty = \frac{\mathbf{a}}{1 - \mathbf{r}}$$

the formula for the sum of infinite terms of G.P.

#### **Convergent Series:**

An infinite series is said to be the convergent series when its sum tends to a finite and definite limit.

For example:

$$\frac{2}{3} + \frac{1}{3} + \frac{1}{6} + \frac{1}{12} + - - - - \text{ is a series}$$
Here  $a = \frac{2}{3}$ ,  $r = \frac{1}{3} + \frac{2}{3} = \frac{1}{2} < 1$ 

$$S \infty = \frac{a}{1 - r}$$

$$= \frac{\frac{2}{3}}{1 - \frac{1}{3}} = \frac{\frac{2}{3}}{\frac{1}{2}}$$

$$= \frac{2}{3} \times \frac{1}{2} = \frac{4}{3}$$

Hence the series is convergent.

## **Divergent Series:**

When the sum of an infinite series is infinite, it is said to be the Divergent series.

For example:

$$2+4+8+16+32+----$$
  
Here  $a=2, r=, 2>1$ 

Therefore we use formula

$$\begin{split} S_n &= \frac{a(r^n-1)}{r-1} = \frac{2(2^n-1)}{2-1} \\ S_n &= 2^{n+1}-2 \\ \underset{n\to\infty}{limit} S_n &= \underset{n\to\infty}{limit} \quad (2^{n+1}-2) \\ S\infty &= 2^{\infty+1}-2 \\ &= \infty \text{ as } n \to \infty, 2^{n+1} \to \infty \end{split}$$

Hence the series is a divergent series.

# 2.14 Recurring Decimals:

When we attempt to express a common fraction such as  $\frac{3}{8}$  or as

 $\frac{4}{11}$  as a decimal fraction, the decimal always either terminates or ultimately repeats.

Thus 
$$\frac{3}{8} = 0.375$$
 (Decimal terminate)  $\frac{4}{11} = 0.363636$  (Decimal repeats)

We can express the recurring decimal fraction  $0.\overline{36}$  (or  $0.\overline{36}$ ) as a common fraction.

The bar  $(0.\overline{36})$  means that the numbers appearing under it are repeated endlessly. i.e.  $0.\overline{36}$  means 0.363636 - - - - -

Thus a non-terminating decimal fraction in which some digits are repeated again and again in the same order in its decimal parts is called a recurring decimal fraction.

### Example 1:

Find the fraction equivalent to the recurring decimals  $0.\overline{123}$ .

#### **Solution:**

$$= \frac{123}{1000} \times \frac{1000}{999} = \frac{123}{999}$$
$$= \frac{41}{333}$$

### Example 2:

Find the sum of infinite geometric series in which a = 128,

$$\mathbf{r}=-\frac{1}{2}.$$

#### **Solution:**

Using 
$$S \infty = \frac{a}{1-r}$$

$$S \infty = \frac{128}{1-\left(\frac{1}{2}\right)} = \frac{128}{1+\frac{1}{2}}$$

$$= \frac{128}{\frac{3}{2}} = 128x\frac{2}{3}$$

$$S \infty = \frac{256}{3}$$

## Exercise 2.7

Q.1 Find the sum of the following infinite geometric series

(i) 
$$\frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \cdots$$

(ii) 
$$2+\sqrt{2}+1+-----$$

Q.2 Find the sum of the following infinite geometric series

(i) 
$$a = 3$$
,  $r = \frac{2}{3}$  (ii)  $a = 3$ ,  $r = \frac{3}{4}$ 

Q.3 Which of the following series are (i) divergent (ii) convergent

(i) 
$$1+4+16+64+\cdots$$

(ii) 
$$6+3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots$$

(iii) 
$$6+12+24+48+-----$$

Find the fractions equivalent to the recurring decimals. Q.4

> 0.36 (i)

 $2.\overline{43}$ (ii)

0.836 (iii)

- Find the sum to infinity of the series  $1 + (1 + k)r + 1 + k + k^2)r^2 +$ Q.5  $(1 + k + k^2 + k^3)r^3 + \cdots + r$  and k being proper fraction.
- If  $y = x + x^2 + x^3 + \cdots = \infty$  and if x is positive and less than 0.6 unity show that  $x = \frac{y}{1+y}$
- What distance a ball travel before coming to rest if it is dropped Q.7 from a height of 6 dm and after each fall it rebounds  $\frac{2}{3}$  of the distance it fell.
- Q.8 The sum of an infinite geometric series in 15 and the sum of the squares of its terms is 45. Find the series.

## Answers 2.7

Q.1 (i) 
$$S \infty = \frac{1}{4}$$
 (ii)  $S \infty = \frac{2\sqrt{2}}{\sqrt{2}-1}$ 

Q.2 (i)

(i)

- (ii) 12
- Divergent Q.3 (i)
- Convergent (ii)(iii)
- Divergent (ii) (iii)

Q.5 
$$\frac{1}{(1-r)(1-Kr)}$$

30 dm. Q.7

Q.4

Q.8 
$$5 + \frac{10}{5} + \frac{20}{9} + \dots$$