2.13 Geometric Series

A geometric series is the sum of the terms of a geometric sequence.

If a, ar, ar^2 , + ar^{n-1} is a geometric sequence. Then $a + ar + ar^2 + \dots + ar^{n-1}$ is a geometric series.

Sum of n Terms of a Geometric Series

For convenience, we use:

$$S_n= \quad \frac{a(1-r^n)}{1-r} \quad if \ |r|<1$$
 and
$$S_n= \quad \frac{a(r^n-1)}{r-1} \quad if |r|>1$$

Example 1:

Sum the series $\frac{2}{3}$, -1, $\frac{3}{2}$, to 7 terms

Solution

Here
$$a = \frac{2}{3}$$
, $r = \frac{-1}{\frac{2}{3}} = \frac{-3}{2}$
 $S_n = \frac{a(1-r^n)}{1-r}$ (because $r < 1$)
$$S_7 = \frac{2}{3} \left[1 - \left(-\frac{3}{2} \right)^7 \right] = \frac{2}{3} \left[1 + \frac{2187}{128} \right]$$

$$S_7 = \frac{2}{3} \left(\frac{2315}{128} \right) \frac{2}{5} = \frac{463}{96}$$

Example 2:

Sum to 5 terms the series $1 + 3 + 9 + \dots$

Solution:

The given series is a G.P.

in which
$$a = 1$$
, $r = \frac{a_2}{a_1} = \frac{3}{1} = 3$, $n = 5$

$$S_n = \frac{a(r^4 - 1)}{r - 1} \text{ (because } r > 1)$$

$$S_n = \frac{1[(3)^5 - 1]}{3 - 1} = \frac{243 - 1}{2} = \frac{242}{2} = 121$$

Example 3:

Find S_n for the series $2+4+8+\ldots +2^n$.

$$\therefore$$
 Since $r = r > 1$

$$\therefore S_n = \frac{a(r^n - 1)}{r - 1} = \frac{2(2^n - 1)}{2 - 1} = 2^{n+1} - 2$$

Example 4:

How many terms of the series

$$\frac{2}{3} - \frac{1}{3} + \frac{1}{2} + \dots$$
 amount to $\frac{55}{72}$

Solution:

$$S_n = \frac{55}{72}, n = ? a = \frac{2}{9}, r = \frac{-\frac{1}{3}}{\frac{2}{9}} = \frac{-3}{2}$$

$$S_{n} = \frac{a(1-r^{n})}{1-r}$$

$$\frac{55}{72} = \frac{\frac{2}{9}\left[1-\left(-\frac{3}{2}\right)^{n}\right]}{1-\left(-\frac{3}{2}\right)} = \frac{\frac{2}{9}\left[1-\left(-\frac{3}{2}\right)^{n}\right]}{\frac{3}{2}}$$

$$\frac{55}{72} = \frac{4}{45} \left[1 - \left(-\frac{3}{2} \right)^n \right]$$

$$\frac{45 \times 55}{72 \times 4} = 1 - \left(-\frac{3}{2}\right)^n \qquad \Rightarrow \frac{275}{32} = 1 - \left(-\frac{3}{2}\right)^n$$

$$\left(-\frac{3}{2}\right)^{n} = 1 - \frac{275}{32} = \frac{243}{32} = \left(-\frac{3}{2}\right)^{5}$$

$$\Rightarrow n = 5$$

Example 5:

Sum the series:

(i)
$$0.2 + .22 + .222 + ...$$
 to n terms

(i)
$$0.2 + .22 + .222 + ...$$
 to n terms
(ii) $(x + y)(x^2 + xy + y^2) + (x^3 + x^2y + xy^2 + y^3) + ...$ to n terms.

Solutions:

$$\begin{array}{ll} \text{(i)} & 0.2 + .22 + .222 + \ to \ n \ terms \\ \text{Let, } S_n = .2 + .22 + .222 + \ to \ n \ terms \\ & = 2[.1 + .11 + .111 + \ to \ n \ terms] \end{array}$$

Multiplying and dividing by 9

$$S_n = \frac{2}{9}[.9 + .99 + .999 + \text{ to n terms}]$$

$$= \frac{2}{9}[(1-1) + (1-.01) + (0.1-.001) + \text{ to n terms}]$$

$$= \frac{2}{9}[(1+1+1+.....n \text{ terms}) - (0.1+.01+.001+..... \text{ to n terms})]$$

$$a = .1 \quad r = \frac{.01}{.1} = 0.1 = \frac{1}{10}$$

$$a = \frac{1}{10}$$

We use
$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_n = \frac{2}{9} \left[n - \frac{\frac{1}{10} \left\{ 1 - \left(\frac{1}{10}\right)^n \right\}}{1 - \frac{1}{10}} \right] = \frac{2}{9} \left[n - \frac{1}{9} \left\{ 1 - \frac{1}{10^n} \right\} \right]$$

Solution (ii)

Let, $S_n = (x + y) + (x^2 + xy + y^2) + (x^3 + x^2y + xy^2 + y^3) + \dots$ to n term. Multiplying and dividing by (x - y)

$$S_n = \frac{1}{(x-y)} [(x+y)(x-y)+(x-y)(x^2+xy+y^2)+(x-y)(x^3+x^2y+xy^2+y^3)+ \dots$$

$$S_n = \frac{1}{(x-y)} [(x^2 - y^2) + (x^3 - y^3) + (x^4 - y^4) + \dots \text{ to n term}]$$

$$\begin{split} S_n &= \frac{1}{(x-y)} \left[(x^2 + x^3 + x^4 + \dots \text{ to n term}) - (y^2 + x^3 + y^4 + \dots \text{ to n term}) \right] \\ \text{We use } S_n &= \frac{a(r^n - 1)}{r - 1} \\ S_n &= \frac{1}{(x-y)} \left[\frac{x^2(x^n - 1)}{x - 1} - \frac{y^2(y^n - 1)}{y - 1} \right] \end{split}$$

Example 6:

The sum of the first 10 terms of a G.P. is equal to 244 times the sum of first 5 terms. Find common ratio.

Solution:

Here,
$$n = 10$$
, $n = 5$, $r = ?$
So, $S_n = \frac{a(1-r^n)}{1-r}$
 $S_{10} = \frac{a(1-r^{10})}{1-r}$, $S_5 = \frac{a(1-r^5)}{1-r}$

By the Given condition:

$$S_{10} = 244S_{5}$$

$$\frac{a(1-r^{10})}{1-r} = 244 \left[\frac{a(1-r^{5})}{1-r} \right]$$

$$\Rightarrow 1-r^{10} = 244(1-r^{5})$$

$$(1)^{2}-(r^{2})^{5} = 244(1-r^{5})$$

$$(1-r^{5})(1+r^{5})= 244(1-r^{5}) \Rightarrow (1-r^{5})[1+r^{5}-244]=0$$

$$\Rightarrow 1+r^{5}-244=0 \quad \text{or} \quad 1-r^{5}=0$$

$$1+r^{5}=244=0 \quad r^{5}=1$$

$$r^{5}=243 \quad \Rightarrow r=1 \text{ which not possible}$$

Example 7:

Given
$$n = 6$$
, $r = \frac{2}{3}$, $S_n = \frac{665}{144}$ find a

Solution:

Formula
$$S_n = \frac{a(r^n - 1)}{r - 1} \qquad \qquad \because |r| > 1$$

$$\frac{665}{144} = \frac{a\left[1 - \left(\frac{2}{3}\right)^6\right]}{1 - \frac{2}{3}}$$

$$= \frac{a\left[1 - \frac{64}{729}\right]}{\frac{1}{3}}$$
$$\frac{665}{144} = a\left[\frac{665}{243}\right]$$
$$a = \frac{665}{144} \times \frac{243}{665}$$
$$a = \frac{27}{16}$$

Example 8:

If a man deposits \$ 200 at the beginning of each year in a bank that pays 4 percent compounded annually, how much will be to his credit at the end of 6 years?

Solution:

The man deposits \$ 200 at the beginning of each year.

The bank pays 4% compounded interest annually

At the end of first year the principle amount or credit becomes = 200(1.04)

At the beginning of second year the principle amount or credit is = 200 + 200 (1.04)

At the end of second year the principle amount or credit becomes

$$= 200(1.04) + 200(1.04)^2$$
$$= 200(1.04 + 1.04^2)$$

So at the end of 6 years the principle amount or credit becomes $= 200 (1.04 + 1.04^2 + ... \text{ sum upto 6 times})$

Consider, $1.04 + 1.04^2 + \dots - 6$ terms.

$$a = 1.04$$
, $r = 1.04$, and $n = 6$

By the formula

$$S_{n} = \frac{a(r^{n} - 1)}{r - 1} \qquad \therefore |r| > 1$$

$$S_{6} = \frac{1.04(1.04^{6} - 1)}{1.04 - 1}$$

$$= \frac{1.04(1.2653 - 1)}{0.04}$$

$$= \frac{1.04 \times 0.2653}{0.04}$$

$$= 6.8983$$

Hence at the end of 6 years the credit is =200(6.8983)=\$1379.66

Exercise 2.6

Find the sum of each of the following series: Q1.

(i)
$$1 + \frac{1}{3} + \frac{1}{9} + \cdots$$
 to 6 terms

(ii)
$$x + x^2 + x^3 - - - - - to 20 terms.$$

(iii)
$$\frac{1}{8} + \frac{1}{4} + \frac{1}{2} + \dots + 64$$

(iv) $3 + 3^2 + 3^3 + \dots + 3^n$

(iv)
$$3+3^2+3^3+\cdots+3^n$$

How many terms of the series? Q2.

$$\frac{2}{3}$$
 - 1 + $\frac{3}{2}$ - $\frac{9}{4}$ + - - - - amount to - $\frac{133}{48}$

- Q3. Sum the series.
 - .3 + .33 + .333 + - - to n terms.
 - 3 + 33 + 333 + - - to n terms.
 - $1 + (1 + x)r + (1 + x + x^2)r^2 + (1 + x + x^2 + x^3)r^3 + -$ to n terms.
- What is the sum of the geometric series for which a = 2, n = 5, Q4. $l = a_n = 32$?
- A rubber ball is dropped from a height of 4.8 dm. It continuously Q5. rebounds, each time rebounding $\frac{3}{4}$ of the distance of the preceding fall. How much distance has it traveled when it strikes the ground for the sixth time?
- The first term of geometric progression is $\frac{1}{2}$ and the 10th term is Q6. 256, using formula find sum of its 12 terms.
- What is first term of a six term G.P. in which the common ratio is Q7. $\sqrt{3}$ and the sixth term is 27 find also the sum of the first three terms.

Answers 2.6

1. (i)
$$\frac{364}{243}$$
 (ii) $\frac{x(1-x^{20})}{1-x}$ (iii) 1023/8

(iv)
$$\frac{3(3^n-1)}{2}$$

2.
$$n = 6$$

3. (i)
$$\frac{1}{3} \left[n - \frac{1}{9} \left(1 - \frac{1}{10^n} \right) \right]$$
 (ii) $\frac{1}{3} \left[\frac{10(10^n - 1)}{9} - n \right]$

(iii)
$$\frac{1}{(1-x)} \left[\frac{1-r^n}{1-r} - \frac{x(1-r^n x^n)}{1-rx} \right]$$

4. 62 5. 26.76 6.
$$\frac{4085}{2}$$
 7. $\sqrt{3}$; $\frac{\sqrt{3}(3\sqrt{3}-1)}{\sqrt{3}-1}$

2.14 Infinite Geometric Sequence:

A geometric sequence in which the number of terms are infinite is called as infinite geometric sequence.

For example:

(i)
$$2, \frac{4}{3}, \frac{8}{9}, \frac{16}{27}, \dots$$

Infinite Series:

as

Consider a geometric sequence a, ar, ar², ----- to n terms.

Let S_n denote the sum of n terms then $S_n = a + ar + ar^2 + \dots + ar^2 + \dots$

Formula
$$S_n = \frac{a(1-r^n)}{1-r} |r| < 1$$

Taking limit as $n \rightarrow \infty$ on both sides

$$\begin{aligned} \underset{n \to \infty}{\text{limit }} S_n &= \underset{n \to \infty}{\text{limit }} \ a \frac{(1 - r^n)}{1 - r} \\ &= \underset{n \to \infty}{\text{limit }} \ a \left[\frac{1}{1 - r} - \frac{r^n}{1 - r} \right] \\ &= \underset{n \to \infty}{\text{limit }} \left(\frac{a}{1 - r} \right) - \underset{n \to \infty}{\text{limit }} \frac{ar^n}{1 - r} \\ n \to \infty, r^n \to 0 \end{aligned}$$

Therefore
$$S \infty = \frac{a}{1-r} - 0$$