8.
$$a = \sqrt{3}$$
 9. 402271.44 10. 5.06 dm
11. 2, 6, 18 or 18, 6, 2 12. 2, 6, 18, 54

2.11 Geometric Mean:

When three quantities are in G.P., the middle one is called the Geometric Mean (G.M.) between the other two. Thus G will be the G.M. between a and b if a, G, b are in G.P.

To Find G.M between a and b:

Let, G be the G.M. between a and b

Then a. G. b are in G.P

$$\therefore \frac{G}{a} = \frac{b}{G} \Rightarrow G^2 = ab$$

$$G = \pm \sqrt{ab}$$

Hence the G.M. between two quantities is equal to the square root of their product.

Example 1:

Find the G.M. between 8 and 72.

Solution:

$$G = \pm \sqrt{ab}$$

 $G = \pm \sqrt{8 \times 72} = \pm \sqrt{8 \times 8 \times 9} = \pm 8 \times 3$
 $G = \pm 24$

2.12 n G.Ms Between a and b:

The numbers G_1 , G_2 , G_3 G_n are said to be n G.Ms between a and b if a, G_1 , G_2 , G_3 G_n , b are in G.P.

In order to obtain the G.M's between a and b, we use the formula $a_n = ar^{n-1}$ to find the value of r and then the G.M's can be computed.

To Insert n G.M's Between Two Numbers a and b

Let, G_1 , G_2 , G_3 G_n be n G.Ms between a and b

$$\begin{array}{lll} \text{Here } a=a, \ a_n=b, \ n=n+2 \ , \ \ r=? \\ a_n & = ar^{n-1} \\ b & = ar^{n-2-1}=ar^{n-1} \\ b/a & = r^{n-1} \\ \Rightarrow r & = (b/a)^{1/(n-1)} \\ \text{So,} & G_1 & = ar = a(b/a)^{1/(n+1)} \\ G_2 & = G_1r = a(b/a)^{1/(n+1)}(b/a)^{1/(n+1)} = a(b/a)^{2/(n+1)} \\ G_3 & = G_2r = a(b/a)^{2/(n+1)}(b/a)^{1/(n+1)} = a(b/a)^{3/(n+1)} \\ G_n & = a(b/a)^{n/(n+1)} \end{array}$$

Example 2:

Find three G.M's between 2 and 32.

Solution:

Thus three G.M's between 2 and 32 are 4, 8, 16.

Example 3:

Insert 6 G.M's between 2 and 256.

Here a = 2, $a_n = 32$, r = ? n = 5

 $G_3 = G_2 r = 8(2) = 16$

Solution:

Let, G₁, G₂, G₃, G₄, G₅, G₆ be six G.M's between 2 and 256. Then 2, G₁, G₂, G₃, G₄, G₅, G₆ 256 are in G.P.

$$\begin{array}{rcl} a_n & = ar^{n-1} \\ a_n & = ar^{n-1} \\ 256 & = 2(r)^{8-1} = 2r^7 \\ 128 & = r^7 \\ (2)^7 & = r^2 \\ \Rightarrow r & = 2 \\ \\ \text{So,} & G_1 & = ar = 2(2) & = 4 \\ G_2 & = G_1r = 4(2) & = 8 \\ G_3 & = G_2r = 8(2) & = 16 \\ G_4 & = G_3r = 16(2) & = 32 \\ G_5 & = G_4r = 32(2) & = 64 \\ G_6 & = G_5r = 64(2) & = 128 \end{array}$$

Hence, required G.M's are 4, 8, 16, 32, 64, 128.

Example 4:

The A.M between two numbers is 10 and their G.M is 8. Determine the numbers.

Solution: A.M =
$$\frac{a+b}{2} = 10$$

 $a+b = 20........................(1)$
G.M. = $\sqrt{ab} = 8$
∴ ab = 64........................(2)
from (2) b = $\frac{64}{a}$, Put in (1)

$$a + \frac{64}{2} = 20$$

 $a^2 + 64 = 20a$
 $(a - 16)(a - 4) = 0$
 $\Rightarrow a = 16$ or $a = 4$
When, $a = 16$, $b = \frac{64}{16} = 4$
When, $a = 4$, $b = \frac{64}{16} = 16$

Hence the numbers are 4 and 16.

Exercise 2.5

Q1. Find G.M between

- (i) 4, 64 (ii) $\frac{1}{3}$, 243 (iii) $\frac{8}{9}$, $\frac{8}{9}$
- Q2. Insert two G.M's between $\sqrt{2}$ and 2.
- Q3. Insert three G.M's between 256 and 1.
- Q4. Insert four G.M's between 9 and $\frac{1}{27}$.
- Q5. Show that A.M of two unequal positive quantities is greater than this G.M.
- Q6. For what value of n is $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ the G.M between a and b, where a and b are not zero simultaneously.
- Q7. Prove that the product of n G.M's between a and b is equal to the n power of the single G.M between them.
- Q8. The A.M of two positive integral numbers exceeds their (positive)G.M by 2 and their sum is 20.Find the numbers.

Answers 2.5

Q1. (i)
$$\pm 16$$
 (ii) ± 9 (iii) $\pm \frac{8}{9}$

Q2.
$$2^{2/3}, 2^{5/6}$$
 Q3. 64, 16, 4 Q4. 3, 1, $\frac{1}{3}, \frac{1}{9}$

Q6.
$$n = -\frac{1}{2}$$
 Q8. 16, 4 or 4, 16