Q.6
$$a = -25$$
 Q.7 $a_{20} = 41$
Q.8 $a = -3$, $d = 2$ Q.9 10 , $\frac{25}{2}$, 15

Q.10 9, 13, 17, ---- and the difference between consecutive terms is equal. So the sequence is an A.P.

2.6 Arithmetic Means (A.Ms):

If a, A, b are three consecutive terms in an Arithmetic Progression, Then A is called the Arithmetic Mean (A.M) of a and b.

i.e. if a, A, b are in A.P. then
$$A - a = b - A$$

$$A + A = a + b$$

$$2A = a + b$$

$$A = \frac{a + b}{2}$$

The arithmetic mean of two numbers is equal to one half the sum of the two numbers.

Example 1:

Find the A.M. between $\sqrt{5}$ –4 and $\sqrt{5}$ +4

Solution:

Here
$$a = \sqrt{5} - 4$$
, $b = \sqrt{5} + 4$
A.M. $= A = \frac{a+b}{2}$
 $A = \frac{\sqrt{5} - 4 + \sqrt{5} + 4}{2}$
 $= \frac{2\sqrt{5}}{2} = \sqrt{5}$

2.7 n Arithmetic Means between a and b:

The number A_1 , A_2 , A_3 - - - - An are said to be n arithmetic means between a and b if a, A, A_2 , A_3 , - - - - - An, b are in A.P. We may obtain the arithmetic means between two numbers by using $a_n = a + (n-1)d$ to find d, and the means can then be computed.

Example 2:

Insert three A.M's between -18 and 4.

Solution:

Let A_1 , A_2 , A_3 be the required A.M's between -18 and 4, then -18, A_1 , A_2 , A_3 , 4 are in A.P.

Here
$$a = -18$$
, $n = 5$, $a_5 = 4$, $d = ?$
Using $a_n = a + (n-1)d$

$$a_5 = -18 + (5 - 1)d$$
 $4 = -18 + 4d$
 $4d = 4 + 18$
 $4d = 22$
 $d = \frac{11}{2}$

Therefore
$$A_1 = 2nd$$
 term $= a + d$ $= -18 + \frac{11}{2} = \frac{-25}{2}$ $A_2 = 3rd$ term $= A_1 + d$ $= \frac{-25}{2} + \frac{11}{2}$ $= \frac{-25 + 11}{2}$ $A_2 = \frac{-14}{2} = -7$

Thus the required A.M's are $\frac{-25}{2}$, -7, $\frac{-3}{2}$

Example 3:

Insert n A.M's between a and b.

Solution:

Let, A_1 , A_2 , A_3 , A_n be the n. A.M's between a and b.

Then a, A_1 , A_2 , A_3 , b, are in A.P.

Let, d be the common difference

So,
$$a = a, n = n + 2, d = ?$$
 $a_n = b$
 $a_n = a + (n - 1)d$
 $b = a + (n + 2 - 1)d$
 $b = a + (n + 1)d$
 $b - a = (n + 1)d$
 $d = \frac{b - a}{n + 1}$
 $A_1 = a + d = a + \frac{b - a}{n + 1} = \frac{a(n + 1) + b - a}{n + 1} = \frac{an + a + b - a}{n + 1}$
 $A_1 = \frac{an + b}{n + 1}$
 $A_2 = A_1 + d = \frac{an + b}{n + 1} + \frac{b - a}{n + 1} = \frac{an + a + b - a}{n + 1}$

$$A_{2} = \frac{(n-1)a + 2b}{n+1}$$

$$A_{n} = \frac{[n-(n-1)]a + nb}{n+1} = \frac{(n-n+1)a + nb}{n+1} \cdot \dots \cdot \frac{a+nb}{n+1}$$

Thus n A.M's between a and b are:

$$\frac{an+b}{n+1}$$
, $\frac{(n-1)a+2b}{n+1}$, $\frac{(n-2)a+3b}{n+1}$ $\frac{a+nb}{n+1}$

Exercise 2.2

- Q.1Find the A.M. between
 - (i) 17 and -3

- (ii) 5 and 40
- (iii) $2 + \sqrt{3}$ and $2 \sqrt{3}$ (iv) x + b and x b
- Insert two A.M's between 5 and 40. Q.2
- Insert four A.M's between $\frac{\sqrt{2}}{2}$ and $\frac{3\sqrt{2}}{2}$ Q.3
- Q.4 Insert five A.M's between 10 and 25.
- Q.5 Insert six A.M's between 12 and –9.
- If 5,8 are two A.M's between a and b, find a and b Q.6
- Find the value of n so that $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ may be the A.M's between Q.7a and b.
- 0.8 Find the value of x if x + 1, 4x + 1 and 8x - 1 are the consecutive terms of an arithmetic progression.
- Q.9 Show that the sum of n A.M's between a and b is equal to n times their single A.M.

Answer 2.2

Q.1 (i) 7 (ii)
$$\frac{35}{2}$$
 (iii) 2 (iv) x

Q.2 10, 25 Q.3
$$\frac{7\sqrt{2}}{10}, \frac{9\sqrt{2}}{10}, \frac{11\sqrt{2}}{10}, \frac{13\sqrt{2}}{10}$$

Q.4
$$\frac{25}{2}$$
, 15, $\frac{35}{2}$, 20, $\frac{45}{2}$ Q.5 9, 6, 3, 0 – 3, –6

Q.6
$$a=2$$
, $b=11$ Q.7 $n=0$ Q.8 $x=2$