Chapter 1

Quadratic Equations

Q2.(i)
$$\frac{7}{18}$$
 (ii) $-\frac{9}{5}$ (iii) - 12

Q3.(i) K = 10, roots = 6, 1 (ii)
$$\alpha = \frac{7}{3}$$
, $\beta = \frac{3}{2}$; c = 21

Q4. (i)
$$\frac{-b^3 + 3abc}{a^3}$$
 (ii) $\frac{b^2 - 2ac}{c^2}$ (iii) $-\frac{b}{\sqrt{ac}}$ (iv) $\frac{3abc - b^3}{a^2c}$ (v) $\frac{-b\sqrt{b^2 - 4ac}}{ac}$

Q5. - 27 Q7. Pr
$$(p+r)+q^3 = 3pqr$$
 Q8. $K = -14$, roots are $-\frac{2}{3}, \frac{7}{3}$

Q9. (i)
$$\frac{q^2 - 2pr}{p^2}$$
 (ii) $\frac{q^2 - 4pr}{p^2}$ (iii) $\frac{r(q^2 - 2pr)}{p^3}$

Formation of Quadratic Equation from the given roots:

Let α, β be the roots of the Equation $ax^2 + bx + c = 0$

The sum of roots =
$$\alpha + \beta = -\frac{b}{a}$$
(I)

Product of roots
$$= \infty$$
. $\beta = \frac{c}{a}$ (II)
The equation is $ax^2 + bx + c = 0$

$$ax^2 + bx + c = 0$$

Divide this equation by
$$a \implies x^2 + \frac{b}{a}x + \frac{c}{a} = 0$$

Or
$$x^2 - \left(-\frac{b}{a}\right)x + \frac{c}{a} = 0$$

From I and II this equation becomes

$$x^2 - (\alpha + \beta)x + \alpha\beta = 0$$

Or
$$x^2 - (Sum of roots) x + Product of roots = 0$$

Or
$$x^2 - (S) x + (P) = 0$$

is the required equation, where $S = \alpha + \beta$ and $P = \alpha \beta$

Alternate method:-

Let α, β be the roots of the equation $a x^2 + b x + c = 0$

i.e.,
$$x = \alpha$$
 and $x = \beta$
 $\Rightarrow x - \alpha = 0$ and $x - \beta = 0$
 $\Rightarrow (x - \alpha)(x - \beta) = 0$
 $x^2 - \alpha x - \beta x + \alpha \beta = 0$

$$x^2 - (\alpha + \beta)x + \alpha\beta = 0$$

 x^2 – (Sum of roots) x + Product of roots = 0 Or

 $x^2 - S x + P = 0$ Or

is the required equation, where $S = \alpha + \beta$ and $P = \alpha \beta$

Example 4:

Form a quadratic Equation whose roots are $3\sqrt{5}$, $-3\sqrt{5}$

Solution:

Roots of the required Equation are $3\sqrt{5}$ and $-3\sqrt{5}$

Therefore S = Sum of roots =
$$3\sqrt{5} - 3\sqrt{5}$$

S = 0

P = Product of roots =
$$(3\sqrt{5})(-3\sqrt{5}) = -9(5)$$

P = -45

Required equation is

$$x^2 - (Sum of roots) x + (Product of roots) = 0$$

Required equation is

$$x^2 - (Sum \text{ of roots}) x + (Product \text{ of roots}) = 0$$

Or $x^2 - Sx + P = 0$
 $x^2 - 0(x) + (-45) = 0$
 $x^2 - 0 - 45 = 0$
 $x^2 - 45 = 0$

Example 5:

If α , β are the roots of the equation $ax^2 + bx + c = 0$, find the equation whose

roots are
$$\frac{\alpha}{\beta}$$
, $\frac{\beta}{\alpha}$.

Solution:

Because α , β are the roots of the Equation $ax^2 + bx + c = 0$

The sum of roots =
$$\alpha + \beta = -\frac{b}{a}$$

Product of roots =
$$\alpha \beta = \frac{b}{a}$$

Roots of the required equation are $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$

Therefore,

S = sum of roots of required equation =
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

= $\frac{\alpha^2 + \beta^2}{\alpha\beta}$: $(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$
= $\frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$ = $\frac{\left(-\frac{b}{a}\right)^2 - 2\frac{c}{a}}{\alpha\beta}$

$$= \frac{\frac{b^2}{a^2} - \frac{2c}{a}}{\frac{c}{a}} = \frac{b^2 - 2ac}{a^2} \times \frac{a}{c}$$
$$S = \frac{b^2 - 2ac}{ac}$$

P = Product of roots of required equation

$$= \frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha} = \frac{\alpha\beta}{\beta\alpha}$$

$$P = 1$$

Required equation is: $x^2 - Sx + P = 0$

$$x^{2} - Sx + P = 0$$

$$x^{2} + \left(\frac{b^{2} - 2ac}{ac}\right)x + 1 = 0$$

$$acx^{2} - (b^{2} - 2ac)x + ac = 0$$

Exercise 1.4

Form quadratic equations with the following given numbers as its roots. Q1.

(ii)
$$3+i, 3-i$$

(iii)
$$2+\sqrt{3}$$
, $2-\sqrt{3}$

(iv)
$$-3+\sqrt{5}$$
, $-3-\sqrt{5}$

(v)
$$4 + 5i$$
, $4 - 5i$

Find the quadratic equation with roots Q2.

- (i)Equal numerically but opposite in sign to those of the roots of the equation $3x^{2} + 5x - 7 = 0$
- (ii) Twice the roots of the equation $5x^2 + 3x + 2 = 0$
- (iii) Exceeding by '2' than those of the roots of $4x^2 + 5x + 6 = 0$

Q3. Form the quadratic equation whose roots are less by '1' than those of $3x^2 - 4x - 1 = 0$

Form the quadratic equation whose roots are the square of the roots of the Q4. equation $2x^{2} - 3x - 5 = 0$

Find the equation whose roots are reciprocal of the roots of the equation Q5. $px^2 - qx + r = 0$

If ∞ , β are the roots of the equation $x^2 - 4x + 2 = 0$ find the equation whose **Q6.** roots are

(i)
$$\alpha^2$$
, β^2

(ii)
$$\alpha^3$$
, β

(i)
$$\alpha^2$$
, β^2 (ii) α^3 , β^3 (iii) $\alpha + \frac{1}{\alpha}$, $\beta + \frac{1}{\beta}$

(iv)
$$\alpha + 2, \beta + 2$$

Chapter 1 **Quadratic Equations**

If α , β are the roots of $ax^2 + bx + c = 0$ form an equation whose roots are **O**7.

(i)
$$\frac{\alpha}{\beta}$$
, $\frac{\beta}{\alpha}$ (ii) $\frac{\alpha^2}{\beta}$, $\frac{\beta^2}{\alpha}$ (iii) $\frac{\alpha+1}{\alpha}$, $\frac{\beta+1}{\beta}$

Answers 1.4

Q1. (i)
$$x^2 + x - 6 = 0$$
 (ii) $x^2 - 6x + 10 = 0$ (iv) $x^2 + 6x + 4 = 0$ (v) $x^2 - 5x + 41 = 0$ Q2. (i) $3x^2 - 5x - 7 = 0$ (ii) $5x^2 - 6x + 8 = 0$ (iii) $4x^2 - 11x + 12 = 0$ Q3. $3x^2 + 2x - 2 = 0$ Q4. $4x^2 - 29x + 25 = 0$ Q5. $rx^2 - qx + p = 0$ Q6. (i) $x^2 - 12x + 4 = 0$ (ii) $x^2 - 40x + 8$

Q2. (i)
$$3x^2 - 5x - 7 = 0$$
 (ii) $5x^2 - 6x + 8 = 0$

Q3.
$$3x^2 + 2x - 2 = 0$$
 Q4. $4x^2 - 29x + 25 = 0$

Q5.
$$rx^2 - qx + p = 0$$
 Q6. (i) $x^2 - 12x + 4 = 0$ (ii) $x^2 - 40x + 8 = 0$

(iii)
$$2x^2 - 12x + 17 = 0$$
 (iv) $x^2 - 8x + 14 = 0$

Q7. (iii)
$$2x^2 - 12x + 17 = 0$$
 (iv) $x^2 - 8x + 14 = 0$
(i) $acx^2 - (b^2 - 2ac)x + ac = 0$ (ii) $a^2cx^2 + (b^3 - 3abc)x + ac^2 = 0$
(iii) $cx^2 - (2c - b)x + (a - b + c) = 0$

Summary

Quadratic Equation:

An equation of the form $ax^2 + bx + c = 0$, $a \ne 0$, where a, b, $c \in R$ and x is a variable, is called a quadratic equation.

If α , β are its roots then

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \ \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Nature of Roots:

- If $b^2 4ac > 0$ the roots are real and distinct. (i)
- If $b^2 4ac = 0$ the roots are real and equal. (ii)
- If $b^2 4ac < 0$ the roots are imaginary. (iii)
- If $b^2 4ac$ is a perfect square, roots will be rational, otherwise irrational. (iv)

Relation between Roots and Co-efficients

If α and β be the roots of the equation $ax^2 + bx + c = 0$

Then sum of roots =
$$\alpha + \beta = \frac{-b}{a}$$

Product of roots
$$= \alpha \beta = \frac{c}{a}$$

Formation of Equation

If α and β be the roots of the equation $ax^2 + bx + c = 0$ then we have $x^2 - (sum of roots)x + (product of roots) = 0$