(ii)
$$(mx + c)^2 = 4ax$$
 will be equal if $c = \frac{a}{m}$

(iii)
$$x^2 + (mx + c)^2 = a^2$$
 has equal roots if $c^2 = a^2 (1 + m^2)$.

- If the roots of $(c^2 ab)x^2 2(a^2 bc)x + (b^2 ac) = 0$ are equal then prove that Q4. $a^{3} + b^{3} + c^{3} = 3abc$
- Show that the roots of the following equations are real Q5.

(i)
$$x^2 - 2 (m + \frac{1}{m})x + 3 = 0$$

(ii)
$$x^2 - 2ax + a^2 = b^2 + c^2$$

(ii)
$$x^2 - 2ax + a^2 = b^2 + c^2$$

(iii) $(b^2 - 4ac)x^2 + 4(a+c)x - 4 = 0$

- Show that the roots of the following equations are rational Q6.
 - $a(b-c)x^{2} + b(c-a)x + c(a-b) = 0$
 - $(a + 2b)x^{2} + 2(a + b + c)x + (a + 2c) = 0$ (ii)
 - (iii)
 - $(a+b)x^2 ax b) = 0$ p x^2 (p-q)x q = 0(iv)
- For what value of 'K' the equation $(4-k) x^2 + 2(k+2) x + 8k + 1 = 0$ will be a **Q**7. perfect square.

(Hint: The equation will be perfect square if Disc. $b^2 - 4ac = 0$)

Answers 1.2

- Q1. (i)Real, rational, unequal
- unequal, real and rational (ii)
- (iii) ir-rational, unequal, real
- (iv) Real, unequal, ir-rational

- **Q2.** (i)1, $\frac{-11}{9}$
- (ii) 2 (iii) 1, -3
- (iv) 2

- **Q**7. 0.3
- 1.10 **Sum and Product of the Roots**

(Relation between the roots and Co-efficient of $ax^2 + bx + c = 0$) The roots of the equation $ax^2 + bx + c = 0$ are

$$\alpha = \frac{-b \pm \sqrt{b^2 - 4ac}}{\frac{2a}{2a}}$$

$$\beta = \frac{-b - \sqrt{b^2 - 4ac}}{\frac{2a}{2a}}$$

Sum of roots

Add the two roots

$$= \frac{-b + \sqrt{b^2 - 4ac} - b - \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-b - b}{2a}$$

$$= \frac{-2b}{2a} = -\frac{b}{a}$$

Hence, sum of roots = $\infty + \beta = \frac{-\text{Co-efficient of x}}{\text{Co-efficient of x}^2}$

Product of roots

$$\alpha \beta = \left(\frac{-b + \sqrt{b^2 - 4ac}}{2a}\right) x \left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right) = \frac{(-b)^2 - (\sqrt{b^2 - 4ac})^2}{2 a^2}$$

$$= \frac{b^2 - b^2 + 4ac}{4a^2}$$

$$= \frac{4ac}{4a^2}$$

$$a\beta = \frac{c}{a}$$

i.e. product of roots = $\infty \beta = \frac{-\text{Constant term}}{\text{Co-efficient of } x^2}$

Example 1:

Find the sum and the Product of the roots in the Equation $2x^2 + 4 = 7x$

Solution:

$$2x^{2} + 4 = 7x$$

$$2x^{2} - 7x + 4 = 0$$
Here $a = 2$, $b = -7$, $c = 4$

Sum of the roots $= -\frac{b}{a} = -\left(-\frac{7}{2}\right) = \frac{7}{2}$

Product of roots $= \frac{c}{a} = \frac{4}{2} = 2$

Example 2:

Find the value of "K" if sum of roots of

$$(2k-1)x^2 + (4K-1)x + (K+3) = 0$$
 is $\frac{5}{2}$

Solution:

$$(2k-1)x^2 + (4K-1)x + (K+3) = 0$$

Here $a = (2k-1), b = 4K-1, c = K+3$

Sum of roots =
$$-\frac{b}{a}$$

 $\frac{5}{2} = -\frac{(4K-1)}{(2K-1)}$:: Sum of roots = $\frac{5}{2}$
 $5(2K-1) = -2(4K-1)$
 $10K - 5 = -8K + 2$
 $10K + 8K = 5 + 5$
 $18K = 7$
 $K = \frac{7}{18}$

Example 3:

If one root of $4x^2 - 3x + K = 0$ is 3 times the other, find the value of "K".

Solution:

Given Equation is $4x^2 - 3x + K = 0$

Let one root be α , then other will be 3 α .

Sum of roots =
$$-\frac{a}{b}$$

$$\alpha + 3\alpha = -\frac{(-3)}{4}$$

$$4\alpha = \frac{3}{4}$$

$$\alpha = \frac{3}{16}$$

Product of roots =
$$\frac{c}{a}$$

$$\alpha(3\alpha) = \frac{K}{4}$$

$$3\alpha^2 = \frac{K}{4}$$

$$K = 12\alpha^2$$

Putting the value of $\alpha = \frac{3}{16}$ we have

$$K = 12 \left(\frac{3}{16}\right)^2$$
$$= \frac{12x9}{256} = \frac{27}{64}$$

Exercise 1.3

Q1. Without solving, find the sum and the product of the roots of the following equations.

(i)
$$x^2 - x + 1 = 0$$

(iii) $x^2 - 9 = 0$

(ii)
$$2y^2 + 5y - 1 = 0$$

(iv) $2x^2 + 4 = 7x$

(iii)
$$x^2 - 9 = 0$$

(iv)
$$2x^2 + 4 = 7x$$

(v)
$$5x^2 + x - 7 = 0$$

Q2. Find the value of k, given that

> The product of the roots of the equation (i)

$$(k+1)x^2 + (4k+3)x + (k-1) = 0$$
 is $\frac{7}{2}$

- The sum of the roots of the equation $3x^2 + kx + 5 = 0$ will be equal to (ii)the product of its roots.
- The sum of the roots of the equation $4x^2 + kx 7 = 0$ is 3. (iii)

(i) If the difference of the roots of $x^2 - 7x + k - 4 = 0$ is 5, find the value of k and Q3.

(ii) If the difference of the roots of $6x^2 - 23x + c = 0$ is $\frac{5}{6}$, find the value of k and the roots.

If α , β are the roots of $ax^2 + bx + c = 0$ find the value of **Q4**.

(i)
$$\alpha^3 + \beta^3$$
 (ii) $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ (iii) $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} = 0$

(iv)
$$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$$
 (v) $\frac{\alpha}{\beta} - \frac{\beta}{\alpha}$

If p, q are the roots of $2x^2 - 6x + 3 = 0$ find the value of $(p^3 + q^3) - 3pq (p^2 + q^2) - 3pq (p + q)$ Q5.

The roots of the equation $px^2 + qx + q = 0$ are α and β , 06.

Prove that
$$\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{q}{p}} = 0$$

Find the condition that one root of the equation $px^2 + qx + r = 0$ is **Q**7. square of the other.

Find the value of k given that if one root of $9x^2 - 15x + k = 0$ exceeds the other Q8. by 3. Also find the roots.

If α , β are the roots of the equation $px^2 + qx + r = 0$ then find the values of Q9.

(i)
$$\alpha^2 + \beta^2$$

(ii)
$$(\alpha - \beta)$$

(i)
$$\alpha^2 + \beta^2$$
 (ii) $(\alpha - \beta)^2$ (iii) $\alpha^3 \beta + \alpha \beta^3$

Q1.(i) 1, 1 (ii)
$$-\frac{5}{2}$$
, $-\frac{1}{2}$ (iii) 0, -9 (iv) $\frac{7}{2}$, 2 (v) $-\frac{1}{5}$, $-\frac{7}{5}$

Chapter 1

Quadratic Equations

Q2.(i)
$$\frac{7}{18}$$
 (ii) $-\frac{9}{5}$ (iii) - 12

Q3.(i) K = 10, roots = 6, 1 (ii)
$$\alpha = \frac{7}{3}$$
, $\beta = \frac{3}{2}$; c = 21

Q4. (i)
$$\frac{-b^3 + 3abc}{a^3}$$
 (ii) $\frac{b^2 - 2ac}{c^2}$ (iii) $-\frac{b}{\sqrt{ac}}$ (iv) $\frac{3abc - b^3}{a^2c}$ (v) $\frac{-b\sqrt{b^2 - 4ac}}{ac}$

Q5. -27 **Q7.** Pr
$$(p+r)+q^3 = 3pqr$$
 Q8. K = -14, roots are $-\frac{2}{3}, \frac{7}{3}$

Q9. (i)
$$\frac{q^2 - 2pr}{p^2}$$
 (ii) $\frac{q^2 - 4pr}{p^2}$ (iii) $\frac{r(q^2 - 2pr)}{p^3}$

Formation of Quadratic Equation from the given roots:

Let α, β be the roots of the Equation $ax^2 + bx + c = 0$

The sum of roots =
$$\alpha + \beta = -\frac{b}{a}$$
(I)

Product of roots
$$= \infty$$
. $\beta = \frac{c}{a}$ (II)
The equation is $ax^2 + bx + c = 0$

$$ax^2 + bx + c = 0$$

Divide this equation by
$$a \implies x^2 + \frac{b}{a}x + \frac{c}{a} = 0$$

Or
$$x^2 - \left(-\frac{b}{a}\right)x + \frac{c}{a} = 0$$

From I and II this equation becomes

$$x^2 - (\alpha + \beta)x + \alpha\beta = 0$$

Or
$$x^2 - (Sum of roots) x + Product of roots = 0$$

Or
$$x^2 - (S) x + (P) = 0$$

is the required equation, where $S = \alpha + \beta$ and $P = \alpha \beta$

Alternate method:-

Let α, β be the roots of the equation $a x^2 + b x + c = 0$

i.e.,
$$x = \alpha$$
 and $x = \beta$
 $\Rightarrow x - \alpha = 0$ and $x - \beta = 0$
 $\Rightarrow (x - \alpha)(x - \beta) = 0$
 $x^2 - \alpha x - \beta x + \alpha \beta = 0$