Chapter 1

Quadratic Equations

(vii).
$$\left\{-\frac{1}{2},3\right\}$$

(ix).
$$\left\{-\frac{b}{a}, \frac{c}{b}\right\}$$

(x).
$$\{-1, -\frac{b+c}{a+b}\}$$

(x).
$$\{-1, -\frac{b+c}{a+b}\}$$
 (xi). $\{\frac{a+b}{ab}, \frac{2}{a+b}\}$ (xii). $\{\frac{13}{4}, \frac{1}{2}\}$

(xii).
$$\{\frac{13}{4}, \frac{1}{2}\}$$

(ii).
$$\{2, -\frac{16}{3}\}$$

(ii).
$$\{2, -\frac{16}{3}\}$$
 (iii). $\{\frac{1 \pm \sqrt{113}}{2}\}$

(iv).
$$\{-a, -b\}$$

(iv).
$$\{-a, -b\}$$
 (v). $\{3, \frac{1}{3}\}$

(vii).
$$\{3b, -\frac{b}{2}\}$$

(viii)
$$\{(a+b), (a-b)\}$$

Q.3. (i).
$$\{\frac{3}{2}, -3\}$$

(ii).
$$\{\frac{1\pm\sqrt{53}}{2}\}$$

Q.3. (i).
$$\{\frac{3}{2}, -3\}$$
 (ii). $\{\frac{1 \pm \sqrt{53}}{2}\}$ (iii). $\{\frac{-11 \pm \sqrt{13}}{6}\}$

(iv).
$$\{\frac{25}{2}, -\frac{1}{2}\}$$

(iv).
$$\left\{\frac{25}{2}, -\frac{1}{2}\right\}$$
 (v). $\left\{m-n, -2(m-n)\right\}$ (vi) $\left\{-1, \frac{-1}{m}\right\}$

(vi)
$$\left\{-1, \frac{-1}{m}\right\}$$

(vii).
$$\{-\frac{2}{a}, \frac{3}{b}\}$$

(vii).
$$\{-\frac{2}{a}, \frac{3}{b}\}$$
 (viii). $\{-b, a\}$ (ix) $\{\frac{-6 + \sqrt{3}}{3}, \frac{-6 - \sqrt{3}}{3}\}$

Q.5. 8.465 seconds

Q.6. 10.6 m

1.8 Classification of Numbers

1. The Set N of Natural Numbers:

Whose elements are the counting, or natural numbers:

$$N = \{1, 2, 3, - \cdots \}$$

2. The Set Z of Integers:

Whose elements are the positive and negative whole numbers and zero:

$$Z = \{-----\}$$

3. The Set Q□ of Rational Numbers: Whose elements are all those numbers that

can be represented as the quotient of two integers $\frac{a}{b}$, where $b \neq 0$. Among the

elements of Q are such numbers as $-\frac{3}{4}$, $\frac{18}{27}$, $\frac{5}{1}$, $-\frac{9}{1}$. In symbol

$$Q = \left\{ \frac{a}{b} \mid a, b \in Z, b \neq 0 \right\}$$

Equivalently, rational numbers are numbers with terminating or repeating decimal representation, such as

1.125, 1.52222, 1.56666, 0.3333

4. The Set Q□ of Irrational Numbers:

Whose elements are the numbers with decimal representations that are non-terminating and non-repeating. Among the elements of this set are such numbers as $\sqrt{2}$, $-\sqrt{7}$, π .

An irrational number cannot be represented in the form $\frac{a}{b}$, where $a,b\in Z$. In symbols,

 $Q' = \{irrational numbers\}$

5. The Set R of Real Numbers:

Which is the set of all rational and irrational numbers:

$$R = \{x \mid x \in Q \cup Q'\}$$

6. The set I of Imaginary Numbers:

Whose numbers can be represented in the form x + yi, where x and y are real numbers, $y \ne 0$ and $i = \sqrt{-1}$

$$I = \{x + yi \mid x, y \in R, y \neq 0, i = \sqrt{-1}\}\$$

If x = 0, then the imaginary number is called a pure imaginary number.

An imaginary number is defined as, a number whose square is a negative i.e,

$$\sqrt{-1}$$
, $\sqrt{-3}$, $\sqrt{-5}$

7. The set C of Complex Numbers:

Whose members can be represented in the form x + y i, where x and y real numbers and $i = \sqrt{-1}$:

$$C = \{x + yi \mid x, y \in R, i = \sqrt{-1}\}$$

With this familiar identification, the foregoing sets of numbers are related as indicated in Fig. 1.

Fig. 1 Hence, it is clear that $N \subseteq Z \subseteq Q \subseteq R \subseteq C$

1.9 Nature of the roots of the Equation $ax^2 + bx + c = 0$

The two roots of the Quadratic equation $ax^2 + bx + c = 0$ are:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The expression $b^2 - 4ac$ which appear under radical sign is called the Discriminant (Disc.) of the quadratic equation. i.e., Disc = $b^2 - 4ac$

The expression b^2 – 4ac discriminates the nature of the roots, whether they are real, rational, irrational or imaginary. There are three possibilities.

$$(i)b^2 - 4ac \le 0$$

(ii)
$$b^2 - 4ac = 0$$

(iii)
$$b^2 - 4ac > 0$$

- (i) If $b^2 4ac \le 0$, then roots will be imaginary and unequal.
- (ii) If $b^2 4ac = 0$, then roots will be real, equal and rational. (This means the left hand side of the equation is a perfect square).
- (iii) If $b^2 4ac > 0$, then two cases arises:
 - (a) b^2 4ac is a perfect square, the roots are real, rational and unequal.

 (This mean the equation can be solved by the factorization)
 - (This mean the equation can be solved by the factorization).
 (b) b² 4ac is not a perfect square, then roots are real, irrational and unequal.

Example 1:

Find the nature of the roots of the given equation

$$9x^2 + 6x + 1 = 0$$

Solution:

$$9x^2 + 6x + 1 = 0$$

Here
$$a = 9$$
, $b = 6$, $c = 1$

Therefore, Discriminant =
$$b^2 - 4ac$$

= $(6)^2 - 4(9)(1)$
= $36 - 36$
= 0

$$b^2 - 4ac = 0$$

: roots are equal, real and rational.

Example 2:

Find the nature of the roots of the Equation

$$3x^2 - 13x + 9 = 0$$

Solution:

$$3x^2 - 13x + 9 = 0$$

Here
$$a = 3, b = -13, c = 9$$

Discriminant =
$$b^2 - 4ac$$

= $(-13)^2 - 4(3)(9)$

$$= 169 - 108 = 61$$

Disc =
$$b^2 - 4ac = 61$$
 which is positive

Hence the roots are real, unequal and irrational.

Example 3:

For what value of "K" the roots of $Kx^2 + 4x + (K - 3) = 0$ are equal.

Solution:

$$Kx^{2} + 4x + (K - 3) = 0$$
Here $a = K, b = 4, c = K - 3$

$$Disc = b^{2} - 4ac$$

$$= (4)^{2} - 4(K)(K - 3)$$

$$= 16 - 4K^{2} + 12K$$

The roots are equal if $b^2 - 4ac = 0$

i.e.
$$16 - 4K^{2} + 12K = 0$$
$$4K^{2} - 3K - 4 = 0$$
$$K^{2} - 4K + K - 4 = 0$$
$$K(K - 4) + 1(K - 4) = 0$$
$$K = 4, -1$$

Hence roots will be equal if K = 4, -1

Example 4:

Solution:

Show that the roots of the equation

$$2(a+b)x^{2} - 2(a+b+c)x + c = 0 \text{ are real}$$
in:
$$2(a+b)x^{2} - 2(a+b+c)x + c = 0$$
Here,
$$a = 2(a+b) , b = -2(a+b+c) , c = c$$
Discriminant
$$= b^{2} - 4ac$$

$$= [-2(a+b+c)]^{2} - 4[2(a+b)c]$$

$$= 4(a^{2}+b^{2}+c^{2}+2ab+2bc+2ac) - 8(ac+bc)$$

$$= 4(a^{2}+b^{2}+c^{2}+2ab+2bc+2ac) - 2ac - 2bc)$$

$$= 4(a^{2}+b^{2}+c^{2}+2ab)$$

$$= 4[(a^{2}+b^{2}+2ab)+c^{2}]$$

$$= 4[(a+b)^2 + c^2]$$

Since each term is positive, hence

Hence, the roots are real.

Example 5:

For what value of K the roots of equation $2x^2 + 5x + k = 0$ will be rational.

Solution:

$$2x^2 + 5x + k = 0$$

Here, $a = 2$, $b = 5$, $c = k$

The roots of the equation are rational if

$$Disc = b^2 - 4ac = 0$$

So,
$$5^2 - 4(2)k = 0$$

 $25 - 8k = 0$
 $k = \frac{25}{8}$ Ans

Exercise 1.2

- Find the nature of the roots of the following equations Q1.
- $2x^2 + 3x + 1 = 0$ (i)
- (ii) $6x^2 = 7x + 5$
- $3x^2 + 7x 2 = 0$ (iii)
- (iv) $\sqrt{2} x^2 + 3x \sqrt{8} = 0$
- For what value of K the roots of the given equations are equal. O2.
- $x^{2} + 3(K + 1)x + 4K + 5 = 0$ (ii) $x^{2} + 2(K 2)x 8k = 0$
 - (iii) $(3K + 6)x^2 + 6x + K = 0$
- (iv) $(K+2)x^2-2Kx+K-1=0$
- Show that the roots of the equations Q3.
 - (i) $a^2(mx + c)^2 + b^2x^2 = a^2b^2$ will be equal if $c^2 = b^2 + a^2m^2$

(ii)
$$(mx + c)^2 = 4ax$$
 will be equal if $c = \frac{a}{m}$

(iii)
$$x^2 + (mx + c)^2 = a^2$$
 has equal roots if $c^2 = a^2 (1 + m^2)$.

- If the roots of $(c^2 ab)x^2 2(a^2 bc)x + (b^2 ac) = 0$ are equal then prove that Q4. $a^{3} + b^{3} + c^{3} = 3abc$
- Show that the roots of the following equations are real Q5.

(i)
$$x^2 - 2 (m + \frac{1}{m})x + 3 = 0$$

(ii)
$$x^2 - 2ax + a^2 = b^2 + c^2$$

(ii)
$$x^2 - 2ax + a^2 = b^2 + c^2$$

(iii) $(b^2 - 4ac)x^2 + 4(a+c)x - 4 = 0$

- Show that the roots of the following equations are rational Q6.
 - $a(b-c)x^{2} + b(c-a)x + c(a-b) = 0$
 - $(a + 2b)x^{2} + 2(a + b + c)x + (a + 2c) = 0$ (ii)
 - (iii)
 - $(a+b)x^2 ax b) = 0$ p x^2 (p-q)x q = 0(iv)
- For what value of 'K' the equation $(4-k) x^2 + 2(k+2) x + 8k + 1 = 0$ will be a **Q**7. perfect square.

(Hint: The equation will be perfect square if Disc. $b^2 - 4ac = 0$)

Answers 1.2

- Q1. (i)Real, rational, unequal
- unequal, real and rational (ii)
- (iii) ir-rational, unequal, real
- (iv) Real, unequal, ir-rational

- **Q2.** (i)1, $\frac{-11}{9}$
- (ii) 2 (iii) 1, -3
- (iv) 2

- **Q**7. 0.3
- 1.10 **Sum and Product of the Roots**

(Relation between the roots and Co-efficient of $ax^2 + bx + c = 0$) The roots of the equation $ax^2 + bx + c = 0$ are

$$\alpha = \frac{-b \pm \sqrt{b^2 - 4ac}}{\frac{2a}{2a}}$$

$$\beta = \frac{-b - \sqrt{b^2 - 4ac}}{\frac{2a}{2a}}$$

Sum of roots

Add the two roots