DAE (1st Year) <u>MATH-123</u> CH # 01---13

IMPORTANT—DEFINITIONS

By: Ali Nawaz Bajwa (M.Phil. (Math), M.Ed.) Mob #:+92(345)6743869 Lecturer in Mathematics Government College of Technology, Sialkot.

** P A P E R - A **

Chapter # 02	5: Define angles of Elevation and
1: State Binomial Theorem for positive	(IA-2016), (IIA-2016)
integer 'n'.	Ans.
(IIA-2020)	Angle of elevation: If the line of sight is
Ans. The rule for expansion of $(a + b)^n$, where	upward from the horizontal, the angle is called angle of Elevation
'n' is any positive integral power, is	
(n) (n) (n) (n) (n)	Angle of depression: If the line of sight
$(a+b)^{n} = \binom{1}{2}a^{n}b^{0} + \binom{1}{2}a^{n-1}b^{1} + \binom{2}{2}a^{n-2}b^{2} + \dots + \binom{n}{2}a^{n}b^{n}$	angle is called angle of Depression.
Chapter # 03	Chapter # 06
2: Define degree and radian measures.	6: What is a scalar? Give examples.
Ans.	Ans. A scalar is a quantity having magnitude
Degree: If a circle is divided into 360° equal	only but no direction. Examples: Length Mass Time Volume etc.
parts, then angle subtended by one part	7: What is a vector? Give examples
degree.	Ans. A vector is a quantity having both
	magnitude and direction.
<u>Radian</u> : Radian is the measure of the angle	Examples: Force, Velocity, Acceleration, etc.
an arc, whose length is equal to the	8: What is a unit vector?
radius of the circle.	called a unit vector.
Chapter # 05	9: What are parallel vectors?
3: Define the law of sines.	(IIA-2016), (IA-2019)
(IIA-2018), (IIA-2019)	Ans. Two vectors \vec{a} and \vec{b} are parallel if
$\mathbf{Ans.}$ In any triangle ABC, with usual	there exist a non-zero $k \in \mathbb{R}$, such that
notations.	$\vec{a} = kb.$
$\mathbf{a} = \mathbf{b} = \mathbf{c}$	10: Define scalar product of two vectors.
$\sin \alpha \ \sin \beta \ \sin \gamma$	Ans. The scalar product of two vectors $\vec{r} \in \vec{R}$ is denoted by $\vec{r} = \vec{R}$ and defined
4: Define the law of cosines.	a ∞ bis denoted by $\mathbf{a} \cdot \mathbf{b}$ and defined
(IA-2017), (IIA-2017), (IIA-2020)	as $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos \theta$
$\mathbf{Ans.}$ In any triangle ABC, with usual	11: Define vector product.
notations.	(IIA-2018)
$a^{-} = b^{-} + c^{-} - 2bc\cos\alpha$	Ans. The vector product of two vectors \vec{r} and \vec{r} and \vec{r}
$\mathbf{ii.} \mathbf{b}^{*} = \mathbf{c}^{*} + \mathbf{a}^{*} - 2\mathbf{c}\mathbf{a}\cos\beta$	a ∞ b is denoted by $a \times b$ and is
$\mathbf{iii.} \mathbf{c}^2 = \mathbf{a}^2 + \mathbf{b}^2 - 2\mathbf{a}\mathbf{b}\cos\gamma$	defined as $\vec{a} \times b = \vec{a} b \sin \theta \hat{n}$.

Available online @ https://mathbaba.com

