
EDUGATE Up to Date Solved Papers 47 Applied Mathematics-II (MATH-233) Paper B

DAE / IIA - 2020	8.	An equation involving one or more
MATH-233 APPLIED MATHEMATICS-II		derivative of a function is called:
PAPER 'B' PART - A (OBJECTIVE)		[a] Quadratic [b] Linear
Time: 30 Minutes Marks: 15		[c] Differential [d] Cubic
Q.1: Encircle the correct answer.	9.	Solution of D.E. $\frac{dy}{dx} = 1$ is:
$\int \left(a + x \right)_{dr} = 2$		[a] $y = x$ [b] $y = x + c$
$1. \qquad \int \left(\frac{a+x}{x}\right) dx = ?$		[c] $y = c$ [d] $y = x^2 + c$
[a] a $lnx + x$ [b] $\frac{(ax+b)^2}{2}$	10.	Degree of D.E. $x \left(\frac{d^3y}{d^3}\right)^2 = 1$ is:
$\begin{bmatrix} c \end{bmatrix} \ell n x + a \begin{bmatrix} d \end{bmatrix} x + a$		[a] 0 [b] 1 [c] 2 [d] 3
$2. \qquad \int (\sec \mathbf{x}) \mathrm{d}\mathbf{x} = ?$	11.	If a function ${f f}({f x})$ is periodic if
[a] $\tan x$ [b] $\frac{\sec^2 x}{2}$ [5]	earn	$f(x) = f(\cdots)$:
$\begin{bmatrix} 2 \\ ln(\sec x + \tan x) \end{bmatrix} \begin{bmatrix} d \end{bmatrix} \sec x \tan x$	Me	[a] $x=T$ [b] $\pm rac{x}{T}$ [c] $\pm xT$ [d] None
3. $e^{9x} dx = ?$	12.	If an odd function, then Fourier
3. $e^{3x} dx = ?$ [a] $\frac{e^{2x}}{2}$ [b] $\frac{e^{x^2}}{2}$ [c] $2e^{2x}$ [d] $\frac{e^{2x+1}}{2}$		coefficient ' \mathbf{a}_0 ' is;
[a] $\frac{e^{2x}}{2}$ [b] $\frac{e^{x2}}{2}$ [c] $2e^{2x}$ [d] $\frac{e^{2x+1}}{2}$		[a] 0 [b] 1 [c] -1 [d] 2
	13.	Laplace transform of the function
4. $\int \frac{1}{1+x^2} dx = ?$		f(t) = 1 is:
		[a] $rac{1}{\mathrm{S}^3}$ [b] $rac{1}{\mathrm{S}^2}$ [c] $rac{1}{\mathrm{S}}$ [d] $-rac{1}{\mathrm{S}}$
[a] $\sin^{-1} x$ [b] $\cos^{-1} x$		
[c] $\sec^{-1} x$ [d] $\tan^{-1} x$	14.	L^1 S = ?
5. $\int (x \sin x) dx = ?$	BAL	
$[a] -x \cos x + \sin x [b] \sin x$		[a] sint [b] cost [c] sin $\left(\frac{1}{t}\right)$ [d] cos $\left(\frac{1}{t}\right)$
[c] $x + \sin x$ [d] $\frac{x^2}{2} \cos x$	15.	The series
	101	
6. $\int_{1}^{3} e^{2x} dx = ?$ [a] $e^{6} - e^{2}$ [b] $\frac{e^{2x}}{2}$		$\frac{\mathbf{a}_0}{2} + \sum_{n=1}^{\infty} \left(\mathbf{a}_n \cos nx + \mathbf{b}_n \sin nx \right) $ is:
[a] $e^6 - e^2$ [b] $\frac{e^{2x}}{-}$		[a] Binomial [b] Fourier
		[c] Arithmetic [d] Geometric
[c] $rac{1}{2} ig(\mathrm{e}^6 + \mathrm{e}^2 ig)$ [d] $rac{1}{2} ig(\mathrm{e}^6 - \mathrm{e}^2 ig)$		Answer Key
2 2		a 2 c 3 a 4 d 5 a
7. $\int_{1}^{2} (3x^2) dx = ? [a] 7 [b] 8 [c] 6 [d] 9$		b 7 a 8 c 9 b 10 c
1 · · ·		a 12 a 13 c 14 b 15 b
1		* * * * * * * * * * * * * * * * * * * *

Available online @ https://mathbaba.com

EDUGATE Up to Date Solved Papers 49 Applied Mathematics-II (MATH-233) Paper B

$$= \int \sin e^{x} (e^{x}) dx$$

$$= \int \tan \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

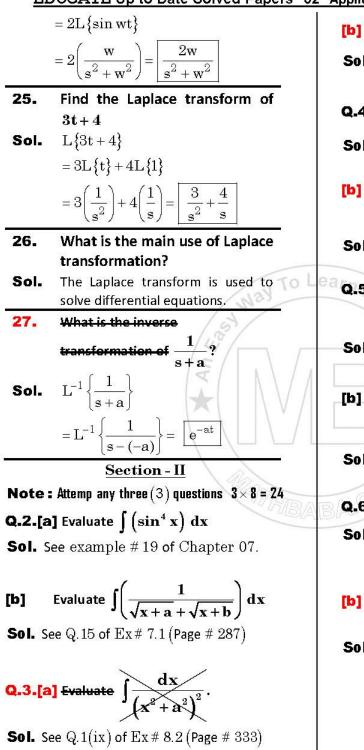
$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) - \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) - \int x dx + \int x dx - \int \left\{ \frac{d}{dx} (tnx) - \int x dx \right\} dx$$

$$= tnx \int x dx - \int \left\{ \frac{d}{dx} (tnx) - \int x dx + \int x$$


EDUGATE Up to Date Solved Papers 50 Applied Mathematics-II (MATH-233) Paper B

12. Evaluate
$$\int_{0}^{\pi/4} (1 + \sec^{2} \mathbf{x}) d\mathbf{x}$$

Sol. $\int_{0}^{\pi/4} (1 + \sec^{2} \mathbf{x}) d\mathbf{x}$
 $= [x + \tan x]_{D}^{\pi/4} \{ \bigcup_{\text{ting formuls $\# 01 & 8.15} \\ = [\frac{\pi}{4} + \tan(\frac{\pi}{4})] - [0 + \tan(0)] \\ = [\frac{\pi}{4} + \tan(45^{\circ})] - [0 + \tan(0^{\circ})] \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting calculator} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{4} + 1 - 1 - 0 - 0 \{ \bigcup_{\text{ting sc} = 1 & \tan 0^{\circ} = 0 \\ = \frac{\pi}{3} + 1 - 1 + 1 \end{bmatrix} \right]^{2}$

13. Find area bounded by $\mathbf{y} = 3\mathbf{x}, \\ \mathbf{y} = \mathbf{x}^{2} \text{ between } \mathbf{x} = 1 \text{ and } \mathbf{x} = 3.$

Sol. Area $= \int_{0}^{1} [f(\mathbf{x}) - g(\mathbf{x})] d\mathbf{x} = 1 + 1 + 1 + 1 = 0 \\ = \frac{\pi}{3} + 2 + 2 - \ell \ln(x + 1) = 0 \\ -1 + \frac{\pi}{3} + 2 + 2 - \ell \ln(x + 1) = 0 \\ = \frac{\pi}{3} + 2 + 2 - \ell \ln(x + 1) = 0 \\ -1 + \frac{\pi}{3} + 2 + 2 - \ell \ln(x + 1) = 0 \\ = \frac{\pi}{3} + 2 - \ell \ln(x + 1) = 0 \\ -1 + \frac{\pi}{3} + 2 + 2 - \ell \ln(x + 1) = 0 \\ = \frac{\pi}{3} + 2 - \ell \ln(x + 1) = 0 \\ = \frac{\pi}{3} + 2 - \ell \ln(x + 1) = 0 \\ -1 + \frac{\pi}{3} + 2 + 2 - \ell \ln(x + 1) = 0 \\ -1 + \frac{\pi}{3} + 2 + 2 - \ell \ln(x + 1) = 0 \\ = \frac{\pi}{3} + 2 - \ell \ln(x + 1) = 0 \\ = \frac{\pi}{3} + 2 - \ell \ln(x + 1) = 0 \\ -1 + \frac{\pi}{3} + 2 + 2 - \ell \ln(x + 1) = 0 \\ -1 + \frac{\pi}{3} + 2 + 2 - \ell \ln(x + 1) = 0 \\ -1 + \frac{\pi}{3} + 2 + 2 - \ell \ln(x + 1) = 0 \\ =$

EDUGATE Up to Date Solved Papers 51 Applied Mathematics-II (MATH-233) Paper B

17.	Evaluate $\int \frac{\sin x}{a + b \cos x} dx$		Integrating both sides, we have:
			$\int \frac{1}{y} dy = \int \frac{3}{x} dx$
Sol.	$\int \frac{\sin x}{a + b \cos x} dx$		$\ell n y = 3\ell n x + \ell n c$
	$Put a + b \cos x = t$		$\ell n y = \ell n x^3 + \ell n c$
	42 MILE DALES SOL STREETS AND SOL		$\ell n y = \ell n (cx^3) \implies y = cx^3$
	$\left \frac{\mathrm{d}}{\mathrm{dx}} (\mathrm{a} + \mathrm{b} \cos \mathrm{x}) = \frac{\mathrm{d}}{\mathrm{dx}} (\mathrm{t}) \right $		
	dt	20.	Write down the formula for
	$0 + b(-\sin x) = \frac{dt}{dx}$	Sol.	extended rule of integration. $\int (fg) dx$
	$-b\sin x dx = dt$		
	$\sin x dx = -\frac{1}{b} dt$	$= \mathbf{fg}_1$	$-f'g_{2}+f''g_{3}++(-1)^{n}\int f^{n}g_{n}dx$
	$\frac{\sin x dx\frac{1}{b} dt}{b}$	21.	Find the order and degree of
	-1 dt	earn n	differential equation
	$=\int \frac{-\frac{1}{b}dt}{t} = -\frac{1}{b}\int \frac{1}{t}dt$		$\left[\frac{\mathrm{d}^2 \mathbf{y}}{\mathrm{d}^3}\right]^3 = \left[\frac{\mathrm{d}^3 \mathbf{y}}{\mathrm{d}^3}\right]^2 = \mathbf{y}$
	^j t b ^j t		$\left[dx^2 \right] = \left[\frac{dx^3}{dx^3} \right] = y$
	$=-\frac{1}{b}\ell n(t)+c$	Sol.	Find the order and degree of differential equation $\left[\frac{\mathbf{d}^2 \mathbf{y}}{\mathbf{dx}^2}\right]^3 - \left[\frac{\mathbf{d}^3 \mathbf{y}}{\mathbf{dx}^3}\right]^2 = \mathbf{y}$ Oder = 3 & Degree = 2
		22.	Solve the differential equation
	$= \left -\frac{1}{b} \ln(a + b\cos x) + c \right $		$\left(\mathbf{e}^{\mathbf{x}} + \mathbf{e}^{-\mathbf{x}}\right) \frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{x}} = \left(\mathbf{e}^{\mathbf{x}} - \mathbf{e}^{-\mathbf{x}}\right)$
			$(\mathbf{e} + \mathbf{e}) \frac{1}{\mathbf{dx}} = (\mathbf{e} - \mathbf{e})$
18.	Evaluate $\int \frac{\sqrt{1+\ell n x}}{x} dx$	Sol.	$\left(e^{x} + e^{-x}\right)\frac{dy}{dx} = \left(e^{x} - e^{-x}\right)$
Sol.	$\int \frac{\sqrt{1+\ell n x}}{x} dx$		$dy = \left(\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\right) dx$
	(1),	BAG	(e + e)
	$= \int \sqrt{1 + \ell n x} \left(\frac{1}{x}\right) dx$		Integrating both sides, we have : $(x - x)$
	$(1 + \ell_{\rm D} x)^{3/2}$		$\int 1 dy = \int \left(\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\right) dx$
	$=\frac{\left(1+\boldsymbol{\ell}\mathbf{n}\mathbf{x}\right)^{3/2}}{3/2}+\mathbf{c}$		
	/2		$y = \ell n \left(e^x + e^{-x} \right) + c$
	$= \left \frac{2}{3} (1 + \ell n x)^{3/2} + c \right $	23.	If a function is even integrable on
19.	Find the general solution of		$\left[-\pi,\pi ight]$ then which co-efficient
1	$\mathbf{x}\mathbf{d}\mathbf{y} = 3\mathbf{y}\mathbf{d}\mathbf{x}$		exist.
Sol.	xdy = 3ydx	Sol.	a_0 and a_n exists and $b_n = 0$.
2000 CO 100	1254 12	24.	Let $f(t) = 2sinwt$. Find $L{f(t)}$
	$\frac{1}{y}dy = \frac{3}{x}dx$	Sol.	$L{f(t)} = L{2\sin wt}$

EDUGATE Up to Date Solved Papers 52 Applied Mathematics-II (MATH-233) Paper B

Evaluate $\int e^{ax} \cos bx dx$. [b] **Sol.** See Q.5(v) of Ex # 8.3 (Page # 357) **Q.4[a]** Evaluate $\int_{1}^{3} \frac{dx}{x^{2} + 16}$ **Sol.** See Q.1(x) of Ex # 9.1 (Page # 378) Find the area bounded by the curves: $y = x^3$ and $y = 4x^2$. **Sol.** See Q.3 of Ex # 9.2 (Page # 388) Q.5.[a] Find the general solution of $(\mathbf{x}+1)\frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{x}} = \mathbf{x}\left(\mathbf{y}^2+1\right)$ **Sol.** See Q.11 of Ex # 10 (Page # 416) Show that $\mathbf{y} = \mathbf{ce}^{\mathbf{x}^2}$ is the solution [b] of differential equation $\frac{1}{y} \frac{dy}{dx} - 2y = 0$ **Sol.** See Q.9 of Ex # 10 (Page # 424) **Q.6[a]** Find $L\{t^2 - 2t\}$ **Sol.** See Q.1(v) of Ex # 12 (Page # 465) [b] Find L^{-1} **Sol.** See Q.6(v) of Ex # 12 (Page # 472) * * * * * * * * * * * * *