EDUGATE Up to Date Solved Papers 70 Applied Mathematics-II (MATH-212) DAE/11A - 2020 $\frac{d}{dx}(e^{3x}) =$ 7. MATH-212 APPLIED MATHEMATICS-II PART - A (OBJECTIVE) [a] e^{3x-1} **[b]** e^{x-1} Time: 30 Minutes Marks:20 [c] 3e^{3x} [d] 3xe^{3x} Q.1: Encircle the correct answer. 8. A function is maximum at a point if If $f(x) = 3^x - 1$, then f(3) = ?1. its 2^{nd} derivative is: [a] 27 [b] 8 [a] +ve [b] -ve [c] 26 [d] 16 [c] zero [d] None of these $\lim_{\theta \to \frac{\pi}{2}} \frac{\sin \theta}{\theta} = ?$ 2. $\int (x^{n+1}) dx = ?$ 9. [a] $\frac{x^{n+2}}{n+2}$ [b] $\frac{x^{n+1}}{n+2}$ [**b**] $\frac{\pi}{2}$ [a] 1 [c] $\frac{2}{\pi}$ [d] $\frac{1}{2}$ [d] $\frac{1}{2}$ [d] $\frac{1}{2}$ [d] $\frac{x^2}{x}$ $\int (\tan x \sec^2 x) dx = ?$ $m x^{m-1}$ is the differential w.r.t. x 3. 10. of: [a] $ln \tan x$ [b] $\frac{\tan^2 x}{2}$ [a] $m(m-1)x^{m-2}$ $[b] (m-1)x^{m-2}$ $[c] \frac{\sec^2 x}{3} \qquad [d] \sec x \tan x$ $[c] x^m$ $[d] mx^m$ $\int \frac{1}{\sqrt{1-x^2}} dx = ?$ If $u = t^2 - 3$, then $\frac{du}{dt} = ?$: 11. 4. [**b**] 2t-3 [a] 2t [a] $\sin^{-1} x$ [b] $\cos^{-1} x$ [c] $\sec^{-1} x$ [d] $\tan^{-1} x$ [c] t^{-2} [d] $2t^{-2}$ $\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}(\sec 3\mathbf{x}) = ?$ $\int \left(\frac{\sec x \tan x}{3 + \sec x}\right) dx = ?$ 5. 12. [a] 3 sec 3x tan 3x $[a] \sec x + \tan x$ [b] sec 3x tan 3x $[b] 3 + \sec x$ [c] 3 sec 3 x cot 3 x $[c] \ \ln(3 + \sec x)$ $[d] - 3 \sec 3x \tan 3x$ [d] $ln(\sec x + \tan x)$ $\frac{d}{dx}(\tan^{-1}x^2) = ?$ **13.** $\int_0^3 \left(\frac{2x}{x^2+1}\right) dx = ?$ [a] $\frac{1}{1+v^2}$ [b] $\frac{1}{1-v^2}$ [a] ln2 [b] ln10 - ln6[c] $\frac{2x}{1+x^4}$ [d] $\frac{2x}{1-x^4}$ [c] $\ell n(x^2+1)$ [d] $\ell n 10 + \ell n 6$

ED	UGATE Up to Date Solved Papers	71 Applied Mathematics-II (MATH-212)
14.	$\int_{0}^{\frac{\pi}{4}} (\sec^2 x) dx = ?$	DAE / IIA - 2020 MATH - 212 APPLIED MATHEMATICS - II
	[a] 1 [b] 2	PART - B (SUBJECTIVE)
	[c] 0 [d] 3	Time:2:30Hrs Marks:60
15.	Ratio formula for y-coordinate is:	Section-I
	$x_1r_0 + x_0r_1$, $y_1r_0 + y_0r_1$	$\mathbf{Q.1:}$ Write short answers to any Twenty Five (25)
	[a] $\frac{x_1r_2 + x_2r_1}{r_1 + r_2}$ [b] $\frac{y_1r_2 + y_2r_1}{r_1 + r_2}$	of the follwing questions. $25 \times 2 = 50$
	[c] $\frac{x-y}{2}$ [d] $\frac{y_1r_2 - y_2r_1}{r_1 + r_2}$	1. If $f(x) = 2x\sqrt{1-x^2}$, find $f(\sin \theta)$
	7. ND	Sol. As, $f(x) = 2x\sqrt{1-x^2}$
16.	When two lines are parallel:	Put $x = \sin \theta$, we have :
	[a] $m_1 = m_2$ [b] $m_1 m_2 = -1$	$f(\sin\theta) = 2\sin\theta\sqrt{1-\sin^2\theta}$
	[c] $m_1 m_2 = 1$ [d] $m_1 = -m_2$	Learn $M = 2\sin\theta\sqrt{\cos^2\theta}$
17.	Slope of the line $\frac{x}{x} + \frac{y}{z} = 1$ is:	
	Slope of the line $\frac{x}{a} + \frac{y}{b} = 1$ is:	$= 2\sin\theta\cos\theta = \underline{\sin 2\theta}$
	[a] $\frac{a}{b}$ [b] $\frac{b}{a}$	2. Find $\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$
	$[c] -\frac{b}{a}$ $[d] -\frac{a}{b}$	Sol. $\lim_{x \to 1} \frac{x^3 - 1}{x - 1} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Form
18.	y – intercept of the line	
	3x + 4y - 12 = 0:	$= \lim_{x \to 1} \frac{(x)^{3} - (1)^{3}}{x - 1}$
	[a] -4 [b] 3	
	[c] 4 [d] -3	$= \lim_{x \to 1} \frac{(x-1)(x^2 + x + 1)}{(x-1)}$
19.	Straight line from center to the	
	circumference is:	$= \lim_{x \to 1} (x^{2} + x + 1) = (1)^{2} + 1 + 1 = \boxed{3}$
	[a] Circle [b] Radius	3. Is the function $f(x) = \frac{x}{x}$
	[c] Diameter [d] Circumference	$(y' x^2 + 1)$
20.	Radius of the circle $\mathbf{x}^2 + \mathbf{y}^2 = 1$ is:	even, odd or neither?
	[a] 1 [b] O	Sol. As, $f(x) = \frac{x}{x^2 + 1}$
	[c] 2 [d] -1	Replace x by $-x$, we have :
×	Answer Key	f(-x) = -x
1 6	c 2 c 3 c 4 a 5 a c 7 c 8 b 9 a 10 b	$f(-x) = \frac{-x}{(-x)^2 + 1}$
11	a 12 c 13 a 14 d 15 b	$f(-x) = -\frac{x}{x^2+1}$
16	a 17 c 18 d 19 b 20 a	$\mathbf{x}^{\mathbf{x}+1} \mathbf{f}(-\mathbf{x}) = -\mathbf{f}(\mathbf{x})$
	****	Hence $f(x)$ is an <u>odd</u> function.
		1

EDUGATE Up to Date Solved Papers 72 Applied Mathematics-II (MATH-212)

$\mathbf{x} \to \infty (\mathbf{x})$ Sol. $\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{x}$ $= \lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{\frac{x}{2} \times 2}$ $= \left(\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{\frac{x}{2}}\right)^{2} = \boxed{e^{2}}$ $\mathbf{z} = \left(\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{\frac{x}{2}}\right)^{2} = \boxed{e^{2}}$ $\mathbf{z} = \left(\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{\frac{x}{2}}\right)^{2} = \boxed{e^{2}}$ $\mathbf{z} = \left(\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{\frac{x}{2}}\right)^{2} = \boxed{e^{2}}$ $\mathbf{z} = \left(\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{\frac{x}{2}}\right)^{2} = \boxed{e^{2}}$ $\mathbf{z} = \left(\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{\frac{x}{2}}\right)^{2} = \boxed{e^{2}}$ $\mathbf{z} = \left(\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{\frac{x}{2}}\right)^{2} = \boxed{e^{2}}$ $\mathbf{z} = \left(\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{\frac{x}{2}}\right)^{2} = \boxed{e^{2}}$ $\mathbf{z} = \left(\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{\frac{x}{2}}\right)^{2} = \boxed{e^{2}}$ $\mathbf{z} = \left(\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{\frac{x}{2}}\right)^{2} = \boxed{e^{2}}$	$\frac{\left(1+\frac{2}{x}\right)^{x}}{\int_{\infty}^{\infty} \left(1+\frac{2}{x}\right)^{\frac{x}{2}\times2}}$ 7. If $y = \frac{1+x}{1-x}$, find $\frac{dy}{dx}$	7. If $y = \frac{1+x}{1-x}$, find $\frac{dy}{dx}$	Sol. $\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x$
$= \lim_{\mathbf{x}\to\infty} \left(1 + \frac{2}{\mathbf{x}}\right)^{\frac{\mathbf{x}}{2}\times2}$ $= \left(\lim_{\mathbf{x}\to\infty} \left(1 + \frac{2}{\mathbf{x}}\right)^{\frac{\mathbf{x}}{2}}\right)^2 = \boxed{\mathbf{e}^2}$ 7. If $\mathbf{y} = \frac{1+\mathbf{x}}{1-\mathbf{x}}$, find $\frac{d\mathbf{y}}{d\mathbf{x}}$ Sol. $\mathbf{y} = \frac{1+\mathbf{x}}{1-\mathbf{x}}$ Differentiate both sides w.r.t. 'x': $d \in \mathbf{y} = \frac{d(1+\mathbf{x})}{d(1+\mathbf{x})}$ By using \mathbf{y}	$\prod_{x} \left(1 + \frac{2}{x}\right)^{\frac{x}{2} \times 2}$ 7. If $y = \frac{1 + x}{1 - x}$, find $\frac{dy}{dx}$ $1 + x$	7. If $y = \frac{1+x}{1-x}$, find $\frac{dy}{dx}$	
$= \left(\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^{\frac{x}{2}} \right)^2 = \boxed{e^2}$ Sol. $y = \frac{1 + x}{1 - x}$ Differentiate both sides w.r.t. 'x': $d \leftarrow y = \frac{d(1 + x)}{1 - x}$	1+x	$1+\mathbf{x}$	$= \lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{\frac{x}{2} \times 2}$
$= \left[\lim_{\mathbf{x} \to \infty} \left(1 + \frac{2}{\mathbf{x}} \right)^{-} \right] = \underline{\mathbf{e}^{2}}$ Differentiate both sides w.r.t. 'x': $d \leftarrow d (1+x) \text{By using} (1+x) (1+$	$ \underset{\rightarrow\infty}{\mathrm{m}}\left(1+\frac{2}{\mathrm{x}}\right)^{\frac{\mathrm{x}}{2}} = \boxed{\mathrm{e}^{2}} $ Sol. $y = \frac{1+\mathrm{x}}{1-\mathrm{x}}$ Differentiate both sides w.r.t. 'x':	+ X	×/
5. If $y = 5x^3 - 7x^2 + 9 - \frac{8}{2} + \frac{7}{4}$, find $\frac{dy}{dx}$ $\frac{d}{dx}(y) = \frac{d}{dx} \left(\frac{1+x}{1-x}\right) \left\{ \begin{array}{c} By \text{ using} \\ Quotient Rule} \right\}$] Sol. $y = \frac{1}{1-x}$ Differentiate both sides w.r.t. 'x':	$=\left(\lim_{\mathrm{x}\to\infty}\left(1+rac{2}{\mathrm{x}} ight)^{rac{\mathrm{x}}{2}} ight)^{2}=\overline{\mathrm{e}^{2}}$
$\mathbf{x} \mathbf{x}^{4} \mathbf{d} \mathbf{x}$	$\mathbf{x} \mathbf{x}^{4}$, \mathbf{x}^{4} , $\mathbf{d}\mathbf{x}$	dx	5. If $y = 5x^3 - 7x^2 + 9 - \frac{8}{x} + \frac{7}{x^4}$, find $\frac{dy}{dx}$
Sol. $y = 5x^3 - 7x^2 + 9 - \frac{8}{x} + \frac{7}{x^4}$ Differentiate both sides w.r.t. 'x': $\frac{dy}{dx} = \frac{(1-x)\left(\frac{d}{dx}(1+x)\right) - (1+x)\left(\frac{d}{dx}(1-x)\right)}{(1-x)^2}$	$5x^{3} - 7x^{2} + 9 - \frac{8}{x} + \frac{7}{x^{4}}$ $\frac{dy}{dx} = \frac{(1 - x)\left(\frac{d}{dx}(1 + x)\right) - (1 + x)\left(\frac{d}{dx}(1 - x)\right)}{(1 - x)^{2}}$	$\frac{7}{x^4} = \frac{(1-x)\left(\frac{d}{dx}(1+x)\right) - (1+x)\left(\frac{d}{dx}(1-x)\right)}{(1-x)^2}$	
Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(y) = \frac{d}{dx} \left(5x^3 - 7x^2 + 9 - \frac{8}{x} + \frac{7}{x^4} \right)$ $\frac{dx}{dx} = \frac{(1-x)(0+1) - (1+x)(0-1)}{(1-x)^2}$			
$\frac{dy}{dx} = \frac{d}{dx} \left(5x^3 - 7x^2 + 9 - 8x^{-1} + 7x^{-4} \right) \qquad \qquad \frac{dy}{dx} = \frac{1 - x + 1 + x}{\left(1 - x\right)^2} \Rightarrow \left \frac{dy}{dx} = \frac{2}{\left(1 - x\right)^2} \right $	$\frac{d}{dx} \left(5x^3 - 7x^2 + 9 - 8x^{-1} + 7x^{-4} \right) \qquad \qquad \frac{dy}{dx} = \frac{1 - x + 1 + x}{\left(1 - x\right)^2} \Rightarrow \left[\frac{dy}{dx} = \frac{2}{\left(1 - x\right)^2} \right]$	$8x^{-1} + 7x^{-4} \Big) \qquad \frac{dy}{dx} = \frac{1 - x + 1 + x}{(1 - x)^2} \Rightarrow \left[\frac{dy}{dx} = \frac{2}{(1 - x)^2} \right]$	$\frac{dy}{dx} = \frac{d}{dx} \left(5x^3 - 7x^2 + 9 - 8x^{-1} + 7x^{-4} \right)$
$\frac{dy}{dx} = 5(3x^2) - 7(2x) + 0 - 8(-1)x^{-2} + 7(-4)x^{-5}$ 8. Differentiate	x^{2}) - 7(2x) + 0 - 8(-1)x^{-2} + 7(-4)x^{-5} 8. Differentiate	$x^{-2} + 7(-4)x^{-5}$ 8. Differentiate	$\frac{dy}{dx} = 5(3x^2) - 7(2x) + 0 - 8(-1)x^{-2} + 7(-4)x^{-5}$
$\frac{1}{dx} = 15x^2 - 14x + \frac{1}{x^2} - \frac{1}{x^5}$ 2x ⁻ + x + 1 w.r.t. x ⁻ - x - 1			
	Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$	Sol. Let, $y = 2x^2 + x + 1 \& t = x^2 - x - 1$	$\frac{dy}{dx} = 15x^2 - 14x + \frac{8}{x^2} - \frac{28}{x^5}$
6. If $ax^2 + by^2 + 2hxy = 0$, find $\frac{dy}{dx}$ $d(x) = \frac{d}{2x^2 + x + 1} \frac{d}{dx} = \frac{d}{2x^2 + x + 1} \frac{d}{dx}$ Differentiate both sides w.r.t. 'x':	Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx} = \frac{d}{dx} $	Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$ Differentiate both sides w.r.t. 'x': $\begin{pmatrix} d \\ d \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \end{pmatrix}$	6. If $ax^{2} + by^{2} + 2hxy = 0$, find $\frac{dy}{dx}$
6. If $ax^2 + by^2 + 2hxy = 0$, find $\frac{dy}{dx}$ Sol. As, $ax^2 + by^2 + 2hxy = 0$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(y) = \frac{d}{dx}(2x^2 + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $	Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(y) = \frac{d}{dx}(2x^2 + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $	Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(y) = \frac{d}{dx}(2x^2 + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $	$\frac{dy}{dx} = 15x^2 - 14x + \frac{8}{x^2} - \frac{28}{x^5}$ 6. If $ax^2 + by^2 + 2hxy = 0$, find $\frac{dy}{dx}$ Sol. As, $ax^2 + by^2 + 2hxy = 0$ Differentiate both sides w.r.t. 'x':
6. If $ax^2 + by^2 + 2hxy = 0$, find $\frac{dy}{dx}$ Sol. As, $ax^2 + by^2 + 2hxy = 0$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(ax^2 + by^2 + 2hxy) = \frac{d}{dx}(0)$ $a(2x) + b(2y)\frac{dy}{dx} + 2b[(\frac{d}{dx})] + x(\frac{d}{dx}(y)] = 0$ Differentiate both sides w.r.t. 'x': $\frac{dy}{dx} = 2(2x) + 1 + 0$ $\frac{dy}{dx} = 2(2x) + 1 + 0$ $\frac{dt}{dx} = 2x - 1 - 0$	Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$ Differentiate both sides w.r.t. 'x': $dx^2 + by^2 + 2hxy = 0$ rentiate both sides w.r.t. 'x': $dx^2 + by^2 + 2hxy = \frac{d}{dx}(0)$ $dy^2 + 2b[(\frac{d}{dx})]_{x+x}(\frac{d}{dy})]_{=0}$ Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(y) = \frac{d}{dx}(2x^2 + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $ $\frac{dt}{dx} = 2x - 1 - 0$ $\frac{dt}{dx} = 2x - 1 - 0$	Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(y) = \frac{d}{dx}(2x^2 + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $ w.r.t. 'x': $\frac{d}{dx}(0) = \frac{d}{dx}(2x^2 + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $ $\frac{dt}{dx} = 2x - 1 - 0$ $\frac{dt}{dx} = 2x - 1$	$\frac{dy}{dx} = 15x^2 - 14x + \frac{8}{x^2} - \frac{28}{x^5}$ 6. If $ax^2 + by^2 + 2hxy = 0$, find $\frac{dy}{dx}$ Sol. As, $ax^2 + by^2 + 2hxy = 0$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(ax^2 + by^2 + 2hxy) = \frac{d}{dx}(0)$
6. If $ax^{2} + by^{2} + 2hxy = 0$, find $\frac{dy}{dx}$ Sol. As, $ax^{2} + by^{2} + 2hxy = 0$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(ax^{2} + by^{2} + 2hxy) = \frac{d}{dx}(0)$ $a(2x) + b(2y)\frac{dy}{dx} + 2h\left[\left(\frac{d}{dx}(x)\right)y + x\left(\frac{d}{dx}(y)\right)\right] = 0$ $2ax + 2by\frac{dy}{dy} + 2h\left(1.y + x\frac{dy}{dx}\right) = 0$ Differentiate both sides w.r.t. 'x': $\frac{dy}{dx}(2x^{2} + x + 1) \left \frac{d}{dx}(1) = \frac{d}{dx}(1) = \frac{d}{dx}(x^{2} - x - 1) + 0 + \frac{d}{dx}(1) = d$	Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(y) = \frac{d}{dx}(2x^2 + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $ $\frac{d}{dx}(t) = \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1)$ $\frac{d}{dx}(y) = \frac{d}{dx}(2x^2 + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $ $\frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1)$ $\frac{d}{dx}(t) = \frac{d}{dx}(t)$ $\frac{d}{dx}(t) = \frac{1}{2x - 1}$	Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(y) = \frac{d}{dx}(2x^2 + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $ w.r.t. 'x': $\frac{d}{dx}(0) = \frac{d}{dx}(2x^2 + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $ $\frac{dt}{dx} = 2x - 1 - 0$ $\frac{dt}{dx} = 2x - 1 - 0$ $\frac{dt}{dx} = 2x - 1$ $\frac{dt}{dx} = 2x - 1$ $\frac{dt}{dx} = 2x - 1$	$\boxed{\frac{dy}{dx} = 15x^2 - 14x + \frac{8}{x^2} - \frac{28}{x^5}}$ 6. If $ax^2 + by^2 + 2hxy = 0$, find $\frac{dy}{dx}$ Sol. As, $ax^2 + by^2 + 2hxy = 0$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(ax^2 + by^2 + 2hxy) = \frac{d}{dx}(0)$ $a(2x) + b(2y)\frac{dy}{dx} + 2h\left[\left(\frac{d}{dx}(x)\right)y + x\left(\frac{d}{dx}(y)\right)\right] = 0$
6. If $ax^{2} + by^{2} + 2hxy = 0$, find $\frac{dy}{dx}$ Sol. As, $ax^{2} + by^{2} + 2hxy = 0$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(ax^{2} + by^{2} + 2hxy) = \frac{d}{dx}(0)$ $a(2x) + b(2y)\frac{dy}{dx} + 2h\left[\left(\frac{d}{dx}(x)\right)y + x\left(\frac{d}{dx}(y)\right)\right] = 0$ $2ax + 2by\frac{dy}{dx} + 2h\left(1.y + x\frac{dy}{dx}\right) = 0$ $2ax + 2by\frac{dy}{dx} + 2hy + 2hx\frac{dy}{dx} = 0$ Differentiate both sides w.r.t. 'x': $\frac{dy}{dx}(2x^{2} + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(t^{2} - x - 1) \right \frac{dt}{dx}(t) = \frac{d}{dx}(x^{2} - x - 1)$ $\frac{dy}{dx}(2x) + 1 + 0 \left \frac{dt}{dx}(x) = 2x - 1 - 0 \right \frac{dt}{dx}(x) = 2x - 1 - 0$ $\frac{dy}{dx}(x) = 4x + 1 \left \frac{dx}{dt}(x) = \frac{1}{2x - 1} \right $ using chain rule : $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$	Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$ Differentiate both sides w.r.t. 'x': $dx^2 + by^2 + 2hxy = 0$ rentiate both sides w.r.t. 'x': $dx^2 + by^2 + 2hxy = 0$ dx(0) $dy^2 + by^2 + 2hxy = \frac{d}{dx}(0)$ $dy^2 + 2h\left[\left(\frac{d}{dx}(x)\right)y + x\left(\frac{d}{dx}(y)\right)\right] = 0$ $2by \frac{dy}{dx} + 2h\left(1.y + x\frac{dy}{dx}\right) = 0$ $2by \frac{dy}{dx} + 2hy + 2hx\frac{dy}{dx} = 0$ $dy^2 = 2(2x) + 1 + 0$ $dy^2 = 2(2x) + 1 + 0$ $dy^2 = 4x + 1$ dx = 2x - 1 - 0 dx = 2x - 1 - 0 dx = 4x + 1 dx = 1 $dx = \frac{1}{2x - 1}$ $dx = \frac{1}{2x - 1}$	Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(y) = \frac{d}{dx}(2x^2 + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $ w.r.t. 'x': $\frac{d}{dx}(0) = \frac{d}{dx}(2x^2 + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $ $\frac{dt}{dx} = 2x - 1 - 0$ $\frac{dt}{dx} = 2x - 1 - 0$ $\frac{dt}{dx} = 2x - 1$ $\frac{dt}{dx} = 2x - 1$ $\frac{dt}{dx} = 2x - 1$ $\frac{dt}{dx} = 1$ using chain rule: $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$	$\boxed{\frac{dy}{dx} = 15x^2 - 14x + \frac{8}{x^2} - \frac{28}{x^5}}$ 6. If $ax^2 + by^2 + 2hxy = 0$, find $\frac{dy}{dx}$ Sol. As, $ax^2 + by^2 + 2hxy = 0$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(ax^2 + by^2 + 2hxy) = \frac{d}{dx}(0)$ $a(2x) + b(2y)\frac{dy}{dx} + 2h\left[\left(\frac{d}{dx}(x)\right)y + x\left(\frac{d}{dx}(y)\right)\right] = 0$ $2ax + 2by\frac{dy}{dx} + 2h\left(1.y + x\frac{dy}{dx}\right) = 0$
6. If $ax^{2} + by^{2} + 2hxy = 0$, find $\frac{dy}{dx}$ Sol. As, $ax^{2} + by^{2} + 2hxy = 0$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(ax^{2} + by^{2} + 2hxy) = \frac{d}{dx}(0)$ $a(2x) + b(2y)\frac{dy}{dx} + 2h\left[\left(\frac{d}{dx}(x)\right)y + x\left(\frac{d}{dx}(y)\right)\right] = 0$ $2ax + 2by\frac{dy}{dx} + 2h\left(1.y + x\frac{dy}{dx}\right) = 0$ Differentiate both sides w.r.t. 'x': $\frac{dy}{dx}(2x^{2} + x + 1) \left \frac{d}{dx}(1) = \frac{d}{dx}(1) = \frac{d}{dx}(x^{2} - x - 1) + \frac{dy}{dx}(1) = \frac{d}{dx}(1) = \frac{d}{d$	Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$ Differentiate both sides w.r.t. 'x': $ax^2 + by^2 + 2hxy = 0$ rentiate both sides w.r.t. 'x': $ax^2 + by^2 + 2hxy = 0$ $ax^2 + by^2 + 2hxy = \frac{d}{dx}(0)$ $by^2 \frac{dy}{dx} + 2h\left[\left(\frac{d}{dx}(x)\right)y + x\left(\frac{d}{dx}(y)\right)\right] = 0$ $2by \frac{dy}{dx} + 2h\left(1.y + x\frac{dy}{dx}\right) = 0$ $2by \frac{dy}{dx} + 2hy + 2hx\frac{dy}{dx} = 0$ $yx + 2hx\frac{dy}{dx} = -2ax - 2hy$ Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(y) = \frac{d}{dx}(2x^2 + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) + \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1)\right $ $\frac{dy}{dx} = 2(2x) + 1 + 0 \left \frac{dt}{dx} = 2x - 1 - 0 + \frac{dt}{dx} = 2x - 1 - \frac{dt}{dx} = 2x - 1 - \frac{dt}{dx} = 2x - 1 - \frac{dt}{dx} + \frac{dt}{dt} = 2x - 1 - \frac{dt}{dx} = 2x - 1 - \frac{dt}{dx} + \frac{dt}{dt} = \frac{dt}{dx} + \frac{dt}{d$	Sol. Let, $y = 2x^2 + x + 1$ & $t = x^2 - x - 1$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(y) = \frac{d}{dx}(2x^2 + x + 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $ $\frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $ $\frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $ $\frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $ $\frac{d}{dx}(t) = \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \left \frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1) \right $ $\frac{d}{dx}(t) = \frac{d}{dx}(t) = \frac{d}{dt}(t) = \frac$	$\boxed{\frac{dy}{dx} = 15x^2 - 14x + \frac{8}{x^2} - \frac{28}{x^5}}$ 6. If $ax^2 + by^2 + 2hxy = 0$, find $\frac{dy}{dx}$ Sol. As, $ax^2 + by^2 + 2hxy = 0$ Differentiate both sides w.r.t. 'x': $\frac{d}{dx}(ax^2 + by^2 + 2hxy) = \frac{d}{dx}(0)$ $a(2x) + b(2y)\frac{dy}{dx} + 2h\left[\left(\frac{d}{dx}(x)\right)y + x\left(\frac{d}{dx}(y)\right)\right] = 0$ $2ax + 2by\frac{dy}{dx} + 2h\left(1.y + x\frac{dy}{dx}\right) = 0$ $2ax + 2by\frac{dy}{dx} + 2hy + 2hx\frac{dy}{dx} = 0$

EDUGATE Up to Date Solved Papers 73 Applied Mathematics-II (MATH-212)

		<u> </u>		· · · · · · · · · · · · · · · · · · ·
Sol.	$\frac{d}{dx} \left(\frac{1 - \cos x}{\sin x} \right) \left\{ \frac{By using}{Product Rule} \right\}$	$\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{t})$	$=\frac{\mathrm{d}}{\mathrm{dt}}(\sin 2\mathrm{t})$	$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{y}) = \frac{\mathrm{d}}{\mathrm{d}t}(2\cos t)$
sin	$x\left(\frac{d}{dx}(1-\cos x)\right) - (1-\cos x)\left(\frac{d}{dx}(\sin x)\right)$	$\frac{\mathrm{dt}}{\mathrm{d} \mathrm{d} \mathrm{d}} =$	$\cos 2t \frac{d}{dt}(2t)$	at at
=	$\frac{(ux)}{\sin^2 x}$	ux	ui	$\frac{dy}{dt} = 2(-\sin t)$
$_{-}\sin$	$x\big(0-(-\sin x)\big)-(1-\cos x)(\cos x)$	$\frac{\mathrm{d}t}{\mathrm{d}x} =$	$\cos 2t(2)$	a t
8 	$\sin^2 x$	dx	1	$\frac{\mathrm{d}y}{\mathrm{d}t} = -2\sin t$
$-\frac{\sin^2}{2}$	$x^{2} - \cos x + \cos^{2} x$	$\frac{dt}{dt} =$	$\frac{1}{2\cos 2t}$	
	$\sin^2 x$	By us	ing Chain's Rul	$e: \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$
$=\frac{1-6}{2}$	$\frac{\cos x}{n^2 x} \qquad \because \left\{ \sin^2 x + \cos^2 x = 1 \right\}$	by us	ing chair s ho	dx dt dx
		dy_	$(-2\sin t)$	$1 \int sint$
	$\frac{2\sin^2\frac{x}{2}}{\ln\frac{x}{2}\cos\frac{x}{2}\right)^2} \because \begin{cases} \sin x = \\ 2\sin\frac{x}{2}\cos\frac{x}{2} \end{cases} $	dx -	$\left(\frac{-2\sin t}{2\alpha}\right)$	$\left \frac{1}{\cos 2t}\right = \left \frac{\sin t}{\cos 2t}\right $
$=$ $\frac{1}{\sqrt{2}}$	2 , $\sin x = $	040	d s	٢
2s	$\operatorname{in} \frac{\mathbf{x}}{2} \cos \frac{\mathbf{x}}{2}$	C14η	Find $\frac{d}{dx} a^{x^2}$	L
			$\frac{d}{dx} \left(a^{x^2} \right)$	
1	$2\sin^2\frac{x}{2}$ 1 1 $\frac{1}{2}x$	301.	$\frac{dx}{dx}$	
	$\frac{2}{2} = \frac{1}{2} = \frac{1}{2} \sec^2 \frac{\pi}{2}$		$=a^{x^{2}}\left(\ell n a \right)$	$\left(\frac{\mathbf{d}}{\mathbf{v}^2}\right)$
$4\mathrm{sr}$	$\frac{2\sin^2\frac{x}{2}}{n^2\frac{x}{2}\cos^2\frac{x}{2}} = \frac{1}{2\cos^2\frac{x}{2}} = \frac{1}{\frac{1}{2}\sec^2\frac{x}{2}}$			$\left(\frac{dx}{dx}\right)$
10.	Find the derivative of		$=a^{x^2}(\ell n a)$	$(2\mathbf{x}) = \boxed{2\mathbf{x}(\ell \mathbf{n} \mathbf{a}) \mathbf{a}^{\mathbf{x}^2}}$
	$(sec^{-1}x)^{3}$	-		
		13.	If $y = lnx$,	find y_2
Sol.	$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left(\sec^{-1} \mathbf{x} \right)^3$	Sol.	$y = \ell n x$	
	us l		Differentiate	both sides w.r.t. ' \mathbf{x} ' :
	$=3\left(\sec^{-1}x\right)^{2}\left(rac{\mathrm{d}}{\mathrm{d}x}\left(\sec^{-1}x ight) ight)$		$\frac{d}{dx}(y) = \frac{d}{dx}(y)$	ℓnx)
	19/19/20-	-00	dx dx dx	a
	$=3(\sec^{-1}x)^2 \frac{1}{x\sqrt{x^2-1}}$	BAN	$y_1 = \frac{1}{y}$	
			л	both sides w.r.t. 'x':
	$\left 3\left(\sec^{-1} x \right)^2 \right $			
	$=$ $x\sqrt{x^2-1}$		$\frac{d}{dx}(y_1) \!=\! \frac{d}{dx}$	$\left(\frac{1}{x}\right)$
11.	If $x \equiv \sin 2t$, $y \equiv 2\cos t$,		d (1)	$=-1(x)^{-2} = \boxed{\frac{-1}{x^2}}$
	- dv	***	$y_2 = \frac{1}{dx} (x)$	$-1(x) - \overline{x^2}$
	then find $\frac{dy}{dx}$.	14.	sin[sin(c	osx)
Sol.	As, $x = \sin 2t \& y = 2\cos t$.	25-2 - 25-2 	alesta.
	Differentiate both equations	Sol.	$\frac{d}{dx} \left[\sin \left[$	
	both sides w.r.t. 't':		$= \cos \left[\sin t \right]$	$\left[\cos x\right] \frac{d}{dx} \left[\sin(\cos x)\right]$
		l	(/	$dx^{\lfloor \sin(\cos x) \rfloor}$

EDUGATE Up to Date Solved Papers 74 Applied Mathematics-II (MATH-212)

$$=\cos[\sin(\cos x)] \cdot [\cos(\cos x)] \cdot \frac{d}{dx}(\cos x)$$

$$=\cos[\sin(\cos x)] [\cos(\cos x)] \cdot [-\sin x)$$

$$=\cos[\sin(\cos x)] [\cos(\cos x)] \cdot [-\sin x)$$

$$=\cos[\sin(\cos x)] [\cos(\cos x)] \cdot [\sin x]$$
15. If $s = \log(t)$, find the velocity
and acceleration at $t = 3 \sec$.
Sol. $s = \log(t)$
Differentiate both sides w.r.t. 't':

$$\frac{d}{dt}(s) = \frac{d}{dt} (\log t)$$

$$v = \frac{1}{t} \rightarrow (i)$$
Differentiate both sides w.r.t. 't':

$$\frac{d}{dt}(v) = dt(\frac{1}{t})$$

$$v = \frac{1}{t^2} \rightarrow (i)$$
Put $t = 3$ in eq.(i) & eq.(ii),
we get:

$$v|_{t=3} = \frac{1}{3} \frac{m}{s} = \frac{1}{9} \frac{m}{sec^2}$$
16. Find the turning points of the curve
 $y = 2x^3 - 15x^2 + 36x + 10$
Differentiate both sides w.r.t. 'x':

$$\frac{d}{dx}(y) = \frac{d}{dx}(2x^3 - 15x^2 + 36x + 10)$$
Differentiate both sides w.r.t. 'x':

$$\frac{d}{dx}(y) = \frac{d}{dx}(2x^3 - 15x^2 + 36x + 10)$$
Differentiate both sides w.r.t. 'x':

$$\frac{d}{dx}(y) = \frac{d}{dx}(2x^3 - 15x^2 + 36x + 10)$$
Differentiate both sides w.r.t. 'x':

$$\frac{d}{dx}(y) = \frac{d}{dx}(2x^3 - 15x^2 + 36x + 10)$$

$$\frac{dy}{dx} = 6x^2 - 30x + 36$$
For turning point, put $\frac{dy}{dx} = 0$
 $6x^2 - 30x + 36 = 0$
Dividing each term on'6', we get:
 $x^2 - 5x + 6 = 0$
 $x(x - 3) - 2(x - 3) = 0$
 $(x - 3)(x - 2) = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x - 2 = 0$
Either OR
 $x - 3 = 0 | x$

EDUGATE Up to Date Solved Papers 75 Applied Mathematics-II (MATH-212)

$$= \int \left(\frac{\sin 2x}{\cos 2x \cos 2x}\right) dx$$

$$= \int \left(\frac{1}{\cos 2x} \cdot \frac{\sin 2x}{\cos 2x}\right) dx$$

$$= \int \left(\sec 2x \tan 2x\right) dx$$

$$= \int (\sec 2x \tan 2x) dx$$

$$= \int (\sin 2x) dx$$
Sol. $\int \sin^{2} x dx$

$$= \int \left(\frac{1 - \cos 2x}{2}\right) dx \quad \because \left\{\frac{\sin^{2} x}{1 - \frac{\cos^{2} x}{2}}\right\}$$

$$= \frac{1}{2} [\int (1) dx - \int (\cos 2x) dx]$$

$$= \int \left(\frac{1}{2} x - \frac{\sin 2x}{2}\right) + c$$
21. Find $\int (\cot^{2} x) dx$

$$= \int (\cot^{2} x) dx$$

$$= \int (\frac{1}{25 + x^{2}}) dx$$
Sol. $\int \left(\frac{1}{25 + x^{2}}\right) dx$

$$= \int \frac{1}{5} \tan^{-1} \left(\frac{x}{5}\right) + c \left\{ \lim_{x \to x \to 0} \frac{\pi^{1/2}}{5} \right\}$$

$$= \left[\frac{1}{2} - \left(\cos 2x\right)\right]_{0}^{\frac{\pi}{6}} = -\left[\cos 2x\right]_{0}^{\frac{\pi}{6}} = -\left[\cos 2x\right]_{0}^{\frac{\pi}{6}} dx$$
Sol. $\int (x \cos x) dx$
Integrating by parts: taking u = x & w = \cos x
$$= -\left(\frac{1-2}{2}\right) = -\left(-\frac{1}{2}\right) = \left[\frac{1}{2}\right]$$

EDU	EDUGATE Up to Date Solved Papers 76 Applied Mathematics-II (MATH-212)		
26.	Evaluate $\int_{\pi/6}^{\pi/3} (\cos ec^2 x) dx$	Sol.	Equation of line in intercept form : x y x y
Sol.	$\int_{\pi/6}^{\pi/3} (\cos ec^2 x) dx = - [\cot x]_{\pi/6}^{\pi/3}$		$\frac{x}{a} + \frac{y}{b} = 1 \implies \frac{x}{2} + \frac{y}{-5} = 1$ $5x - 2y \qquad 1 \qquad 5x = 2$
	$= -\left[\cot\left(\frac{\pi}{3}\right) - \cot\left(\frac{\pi}{6}\right)\right]$		$\frac{5x - 2y}{10} = 1 \implies 5x - 2y = 10$ $\implies 5x - 2y - 10 = 0$
	$= -\left[\cot 60^\circ - \cot 30^\circ\right]$	31.	Show that the lines passing
	$\begin{bmatrix} - & - \\ - & - \end{bmatrix} = \begin{bmatrix} - & - \\ 1 - (\sqrt{3})^2 \end{bmatrix}$	011	through points $(0, -7), (8, -5)$
	$= -\left[\frac{1}{\sqrt{3}} - \sqrt{3}\right] = -\left(\frac{1 - \left(\sqrt{3}\right)^2}{\sqrt{3}}\right)$		and (5, 7), (8, –5) are
	(1-3) (-2) (-2)	Sal	perpendicular.
	$= -\left(\frac{1-3}{\sqrt{3}}\right) = -\left(\frac{-2}{\sqrt{3}}\right) = \boxed{\frac{2}{\sqrt{3}}}$		$\ell_1 : (0, -7) \& (8, -5) \mid \ell_2 : (5, 7) \& (8, -5)$
27.	Evaluate $\int_{1}^{3} \frac{1}{x+1} dx$ $\int_{1}^{3} \frac{1}{x+1} dx$	earn	of $\ell_1 =$ Slope of $\ell_2 =$
~ 1.	$J_1 x + 1$	$\mathbf{m}_1 = \frac{3}{2}$	$\mathbf{m}_{2} = \frac{\mathbf{y}_{2} - \mathbf{y}_{1}}{\mathbf{x}_{2} - \mathbf{x}_{1}}$ $\mathbf{m}_{2} = \frac{\mathbf{y}_{2} - \mathbf{y}_{1}}{\mathbf{x}_{2} - \mathbf{x}_{1}}$
Sol.	$\int_{1}^{3} \frac{1}{x+1} dx$		
		m ₁ = -	$\frac{-5+7}{8} = \frac{2}{8} = \frac{1}{4}$ $m_2 = \frac{-5-7}{8-5} = \frac{-12}{3} = -4$
	$= \left[\ell n \left(x + 1 \right) \right]_{1}^{S} \left\{ \begin{matrix} \text{using} \\ \text{Rule-II} \end{matrix} \right\}$		0 0 1 00 0
	$=\ell n\left(3+1\right) -\ell n\left(1+1\right)$	As,	$m_1 m_2 = \left(\frac{1}{4}\right)(-4) = -1$
	$= \ell n(4) - \ell n(2)$	Hence bo	th lines $\ell_1 \& \ell_2$ are perpendicular Proved.
	$= \ell n \left(\frac{4}{2}\right) = \ell n 2$	32.	Find the distance to the line
			3x - 2y + 12 = 0 from the point
28.	Evaluate $\int \frac{\mathrm{dx}}{\mathrm{x}(1+\ell n\mathrm{x})}$		(-1, 7).
19221 12		Sol.	$D = \frac{ ax_1 + by_1 + c }{\sqrt{2} + 12}$
Sol.	$\int \frac{\mathrm{dx}}{\mathrm{x}(1+\boldsymbol{\ell}\mathrm{nx})}$	BAN	$\sqrt{a^2 + b^2}$
	1 1 1 Ju		$D = \frac{ 3(-1) - 2(7) + 12 }{\sqrt{(3)^2 + (-2)^2}}$
	$=\int \frac{1}{\left(1+\boldsymbol{\ell}\mathbf{n}\mathbf{x}\right)} \cdot \frac{1}{\mathbf{x}} d\mathbf{x}$		• 00.00000000 00.000 000
	$= \boxed{\boldsymbol{\ell} \mathbf{n} \left(1 + \boldsymbol{\ell} \mathbf{n} \mathbf{x} \right) + \mathbf{c}}$		$D = \frac{\left -3 - 14 + 12\right }{\sqrt{9 + 4}} = \left \frac{5}{\sqrt{13}}\right $
29.	Write distance formula between	33.	Find the midpoint of the points
	two points.		A(6, -2) and $B(2, 1)$.
Sol.	Let $A(x_1, y_1)$ & $B(x_2, y_2)$ be two		
	different points, then,	Sol.	$Mid \operatorname{-Point} = \left(\frac{\mathbf{x}_1 + \mathbf{x}_2}{2}, \frac{\mathbf{y}_1 + \mathbf{y}_2}{2}\right)$
	Distance = $ AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$		(6+2 -2+1) (8 -1) (.1)
30.	Find an equation on the line with	%=	$=\left(\frac{6+2}{2},\frac{-2+1}{2}\right)=\left(\frac{8}{2},\frac{-1}{2}\right)=\left(4,-\frac{1}{2}\right)$
ŧ	he following intercepts: a = 2, b = –5	20. 20	1997 - 19

EDUGATE Up to Date Solved Papers 77 Applied Mathematics-II (MATH-212)

ED	UGATE Up to Date Solved Papers
34.	Define real circle.
Sol.	A circle is called imaginary circle if ${f r}>0.$
35.	Find the equation of circle with
	center $(-1, 2)$ and radius $\mathbf{r} = \sqrt{2}$.
Sol.	Standard form of equation of circle :
	$(x-h)^{2} + (y-k)^{2} = r^{2}$
	Put $h = -1$, $k = 2$ & $r = \sqrt{2}$
	$(x - (-1))^2 + (y - 2)^2 = (\sqrt{2})^2$
	$(\mathbf{x}+1)^2 + (\mathbf{y}-2)^2 = 2$
	$x^{2} + 2x + 1 + y^{2} - 4y + 4 - 2 = 0$
	$x^{2} + y^{2} + 2x - 4y + 3 = 0$
36.	Reduce the equation
	$x^2 + y^2 - 4x + 6y - 12 = 0$
	into standard form.
Sol.	
	$x^2 + y^2 - 4x + 6y - 12 = 0$
	$x^{2} - 4x + y^{2} + 6y = 12$
	Adding the square of one half of the
	coefficient of 'x' & 'y' on both sides :
2	$(x^{2} - 4x + (2)^{2} + y^{2} + 6y + (3)^{2} = 12 + (2)^{2} + (3)^{2}$
	$(x-2)^2 + (y+3)^2 = 12 + 4 + 9$
	$(x-2)^2 + (y+3)^2 = 25$
	$(x-2)^2 + (y+3)^2 = (5)^2$
37.	
J7.	Write the general form of the circle, also represent the center
	and radius in this form.
Sol	
	$Center = \boxed{(-g, -f)}$
	& Radius = $\sqrt{\mathbf{g}^2 + \mathbf{f}^2 - \mathbf{c}}$
	Section - II
Note	a Attemp any three (3) questions $3 \times 10 = 30$
	[a] Prove that: $\mathbf{f} \big[\mathbf{f} ig(\mathbf{x} ig) \big] = \mathbf{x}$, for the
	function $f(x) = \frac{x+1}{x-1}$.
Sol	See Q.10 of Ex # 1.1 (Page # 7)
- VII	

Appl	ieu wathematics-ii (wath-212)
[b]	If $x = \frac{1 - t^2}{1 + t^2}$, $y = \frac{2t}{1 + t^2}$ then
	prove that: $y \frac{dy}{dx} + x = 0$
Sol.	See $\mathrm{Q.4}\mathrm{(iii)}$ of $\mathrm{Ex}\#2.3$ (Page $\#78\mathrm{)}$
Q.3.	[a] Find the derivative of
	$\sin^m x \sin mx$ w.r.t. 'x'.
Sol.	See $Q.3(iii)$ of Ex # 3.1 (Page # 112)
[b]	Find the maximum and minimum
	(extreme) values of the function
	$(x-2)^{2}(x-1).$
Sol.	See $Q.2(vi)$ of Ex # 4.2 (Page # 190)
Q.4.	[a] Find the anti-derivative of
	$\int (\sin x + \cos x)^2 (\cos^2 x - \sin^2 x) dx$
Sol.	See $\mathrm{Q.1}\big(\mathrm{xv}\big)$ of $\mathrm{Ex}\#5.2$ (Page $\#245\big)$
[b]	Evaluate $\int (x \cos^2 x) dx$
Sol.	See $\mathrm{Q.1(iii)}$ of $\mathrm{Ex}\#6.3$ (Page $\#282)$
Q.5.	[a] Evaluate $\int (\sec^3 x) dx$
Sol.	See $Q.1(v)$ of Ex # 6.3 (Page # 283)
[b]	Is the point $ig(0,4ig)$ inside or
/	outside the circle of radius 4 with
	center at $(-3, 1)$.
Sol.	See Q.3 of Ex # 8.1 (Page # 356)
Q.6.	[a] If a line ℓ_1 contains P(2, 6) and
	Q(0, y). Find \mathbf{y}' if $\boldsymbol{\ell}_1$ is parallel to
	ℓ_2 and that the slope of $\ell_2 = \frac{3}{4}$.
Sol.	See Q.2 of Ex # 8.3 (Page # 374)
[b]	Find which of the two circles
	$\mathbf{x}^2+\mathbf{y}^2-3\mathbf{x}+4\mathbf{y}=0$ and
	$\boldsymbol{x}^2 + \boldsymbol{y}^2 - \boldsymbol{6} \boldsymbol{x} - \boldsymbol{8} \boldsymbol{y} = \boldsymbol{0}$ is greater.
Sol.	See Q.7 of Ex # 9 (Page # 446)
	* * * * * * * * * * * * *