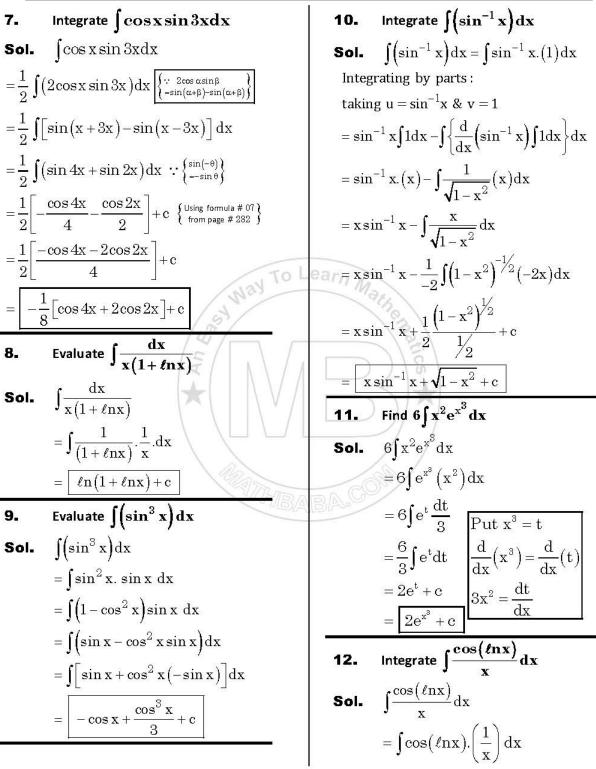
EDUGATE Up to Date Solved Papers 17 Applied Mathematics-II (MATH-233) Paper B

-	DAE / IIA - 2017		[a	a] —]	1 [k	ɔ] 1	[c] 0	[d]	13	
MA	TH-233 APPLIED MATHEMATICS-II PAPER 'B' PART-A(OBJECTIVE)	9.	An equation involving one or more derivative of a function is called:								
Time:30 Minutes Marks:15				NOTES STORE			0.000] Lin			
$\mathbf{Q.1:}$ Encircle the correct answer.				11 2 - MERCOS			2018 - 1993] Cu			
1.	$\int (\sec x) dx = ?$	10.	Degree of differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = 0$ is:								
	[a] $ln(\sec x \tan x)$ [b] $\tan x$					···· /					
	[c] $ln(\sec x + \tan x)$ [d] $rac{\sec^2 x}{2}$		- 575	1000	- 575	2022] 0	575 - 547	18	
_	1.0.470310 #0070.004	11.	Solution of differential equation								
2.	$\int \left(\mathbf{x}^{n+1} \right) \mathbf{dx} = ?$		x dy + y dx = 0 is; [a] $y = cx$ [b] $y = x$								
	$[a] \frac{x^{n+1}}{n+1} [b] (n+1) x^{n} [c] \frac{x^{n+2}}{n+2} [d] \frac{x^{2}}{2}$							-		2	
	n+1 $n+2$ $n+2$ 2	Learn	[c] $xy = c$ [d] $x^2 + c = y^2$ If an even function, the Fourier								
3.	$\int \left(\frac{\cos x}{\sin x}\right) dx = ?$	12.	-0	O N.,		⊧run +t'b		1996	e + 0	uriei	6
	J(sin x)				- A.		**	- 1	[d]	2	
	[a] $l n \cos x$ [b] $l n \sin x$	13.		18		10- 0 -02245		ıoft	1000	5965 - 978 -	ion
	[c] $l n \cot x$ [d] $\frac{\cos^2 x}{2}$		V	(t)	1. A						
4.	$\int (x \sin x) dx = ?$		\sim	2 L.		- 270	[[c]s-	1 [d]s	
	$\begin{bmatrix} a \end{bmatrix} -x \cos x + \sin x \begin{bmatrix} b \end{bmatrix} \sin x$	14.	-Li	apla	ce ti	ransi	form	oft	he f	uncti	ion
	[c] $x + \sin x$ [d] $\frac{x^2}{2} \cos x$			1212	and here a	i n w					
5.	$\int (\mathbf{x} \mathbf{e}^{\mathbf{x}}) \mathbf{d} \mathbf{x} = ?$	ADA G	[a	a]	2	2	[b	$\frac{1}{s^2}$	w	2	
	\mathbf{x}^2	ALBIAN		N	252403286	Y Y		~	1.000	65	
	[a] $ ext{xe}^{ ext{x}} + ext{e}^{ ext{x}}$ [b] $ ext{xe}^{ ext{x}} - ext{e}^{ ext{x}}$ [c] $ ext{e}^{ ext{x}}$ [d] $rac{ ext{x}^{ ext{a}}}{2} ext{e}^{ ext{x}}$		[0	$\left[\frac{1}{\alpha^2}\right]$	2	2	[d	$\frac{1}{c^2}$	1	,2	
6.	$\int (\mathbf{a}\mathbf{x} + \mathbf{b})^3 \mathbf{d}\mathbf{x} = ?$	15.	Ŧ	he Ir	T VOR	n Ke L:	anla	ce tr	ansf	orm	
	[a] $3(ax+b)^{2}$ [b] $3a(ax+b)^{2}$			-1							
	[c] $\frac{(ax+b)^3}{4a}$ [d] $\frac{(ax+b)^4}{4a}$			a] 1		5] 2	ſc	13	[d]	4	
	4a 4a			(nsw					
7.	$\int_{0}^{1} \frac{1}{x^{2}+1} dx = ?$	1	с	2		3	a	4	a	5	а
9.00	$J_0(x^2+1)^{-1}$	6	d d	7	d	8	a	9	a	10	a b
	[a] $-\frac{\pi}{4}$ [b] 1 [c] 0 [d] $\frac{\pi}{4}$	11	c u	12	d	13	a	14	b	15	d
	ат ат 2004		**		i di secondo			***	in Annannair		
8.	$\int_0^{\frac{\pi}{2}} (\cot x) \mathrm{d}x = ?$										
	Available online @	https://m	hat	hha	ha	cor	n				


[a]
$$\frac{1}{S^2 + w^2}$$
 [b] $\frac{w}{S^2 + w^2}$
[c] $\frac{S}{S^2 + w^2}$ [d] $\frac{1}{S^2 - w^2}$

$$\mathbf{L}^{-1} \left(\frac{1}{\mathbf{S}} \right) \xrightarrow{\mathbf{is:}}$$
[a] 1 [b] 2 [c] 3 [d] 4
Answer Key

1	\mathbf{c}	2	с	3	a	4	a	5	a
6	d	7	d	8	a	9	a	10	b
11	с	12	d	13	a	14	b	15	d

EDUGATE Up to Date Solved Papers 18 Applied Mathematics-II (MATH-233) Paper B

EDUGATE Up to Date Solved Papers 19 Applied Mathematics-II (MATH-233) Paper B

EDUGATE Up to Date Solved Papers 20 Applied Mathematics-II (MATH-233) Paper B

Put $\ell nx = t \Rightarrow \frac{d}{dx}(\ell nx) = \frac{d}{dx}(t)$	15. Evaluate $\int_0^3 \sqrt[3]{(3x-1)^2} dx$
$\frac{1}{x} = \frac{dt}{dx} \Rightarrow \left(\frac{1}{x}\right) dx = dt$	Sol. $\int_{0}^{3} \sqrt[3]{(3x-1)^2} dx$
$= \int \cot dt = \sin t + c = \sin (\ell nx) + c$	$= \int_{0}^{3} (3x - 1)^{\frac{2}{3}} dx$ $= \int_{0}^{3} (3x - 1)^{\frac{2}{3}} dx$
13. Find $\int \frac{1}{25 + x^2} dx$	$=\frac{1}{3}\int_{0}^{3} (3x-1)^{2/3} (3) dx$
Sol. $\int \frac{1}{25+x^2} dx$	$= \frac{1}{3} \left[\frac{(3x-1)^{\frac{5}{3}}}{\frac{5}{3}} \right]_{0}^{3} \left\{ \frac{\text{using}}{\text{Rule-I}} \right\}$
$= \int \frac{1}{(5)^2 + (x)^2} \mathrm{d}x$	$=\frac{1}{3} \times \frac{3}{5} \left[(3x-1)^{5/3} \right]_{0}^{3}$
$= \boxed{\frac{1}{5} \tan^{-1} \left(\frac{x}{5}\right) + c} \left\{ \underset{\text{from page # 282}}{\text{Using formula #17}} \right\}$ 14. Calculate the Integral	$earn = \frac{1}{5} \left[\left(3(3) - 1 \right)^{\frac{5}{3}} - \left(3(0) - 1 \right)^{\frac{5}{3}} \right]$
14. Calculate the Integral	$=\frac{1}{5}\left[\left(8\right)^{\frac{5}{3}}-\left(-1\right)^{\frac{5}{3}}\right]$
$\int_0^{\frac{\pi}{4}} (\sin^2 x) dx$	$=\frac{1}{5}\left[32-\left(-1\right)\right]=\boxed{\frac{33}{5}}$
Sol. $\int_0^{\pi/4} (\sin^2 x) dx$	$16. \text{Evaluate } \int_0^{\pi/2} \frac{\cos x}{3 + 4\sin x} \mathrm{d}x$
$= \int_0^{\frac{\pi}{4}} \left(\frac{1 - \cos 2x}{2} \right) \mathrm{d}x := \left\{ \frac{\sin^2 x}{2} \right\}$	Sol. $\int_0^{\pi/2} \frac{\cos x}{3+4\sin x} dx$
$=\frac{1}{2}\int_{0}^{\pi/4} (1-\cos 2x) dx$	$=\frac{1}{4}\int_{0}^{\pi/2}\frac{4\cos x}{3+4\sin x}dx$
$=\frac{1}{2}\left[\mathbf{x} - \frac{\sin 2\mathbf{x}}{2}\right]_{0}^{\pi/4} \left\{ \begin{array}{c} \text{Using formula # 01 \& 08} \\ \text{from page # 282} \end{array} \right\}$	$= \frac{1}{4} \left[\ell n \left(3 + 4 \sin x \right) \right]_{0}^{\frac{\pi}{2}} \left\{ \begin{array}{c} \text{using} \\ \text{Rule-II} \end{array} \right\}$
$=\frac{1}{2}\left[\left(\frac{\pi}{4}-\frac{\sin 2\left(\frac{\pi}{4}\right)}{2}\right)-\left(0-\frac{\sin 2(0)}{2}\right)\right]$	$=\frac{1}{4}\left[\ell n\left(3+4\sin\left(\frac{\pi}{2}\right)\right)-\ell n\left(3+4\sin(0)\right)\right]$
$\begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix}$	$= \frac{1}{4} \left[\ell n \left(3 + 4(1) \right) - \ell n \left(3 + 4(0) \right) \right]$
$=\frac{1}{2}\left[\frac{\pi}{4}-\frac{\sin 2 \left(45^\circ\right)}{2}+\frac{\sin 2 \left(0^\circ\right)}{2}\right]$	$=\frac{1}{4}\left[\ell\mathbf{n}(7)-\ell\mathbf{n}(3)\right]$
$=\frac{1}{2}\left[\frac{\pi}{4} - \frac{\sin(90^{\circ})}{2} + \frac{\sin(0^{\circ})}{2}\right]$	$= \boxed{\frac{1}{4} \ell n\left(\frac{7}{3}\right)} \begin{cases} \text{By using logrithm law} \\ \ell n\left(\frac{m}{n}\right) = \ell n\left(m\right) - \ell n\left(n\right) \end{cases}$
$=\frac{1}{2}\left[\frac{\pi}{4} - \frac{1}{2} + \frac{0}{2}\right] = \frac{1}{2}\left(\frac{\pi - 2}{4}\right) = \boxed{\frac{\pi - 2}{8}}$	17. Evaluate $\int_0^1 (x e^x) dx$
Available online @ bt	the limethale com

EDUGATE Up to Date Solved Papers 21 Applied Mathematics-II (MATH-233) Paper B

Sol.
$$\int_{0}^{1} (x e^{x}) dx$$
Integrating by parts :
taking u = x & v = e^{x}
$$= x \int_{0}^{1} e^{x} dx - \int_{0}^{1} \left(\frac{d}{dx}(x)\right) e^{x} dx \right) dx$$

$$= \begin{bmatrix} x e^{x} \end{bmatrix}_{0}^{1} - \int_{0}^{1} (1 \cdot e^{x}) dx$$

$$= \begin{bmatrix} 1e^{1} - 0e^{0} \end{bmatrix} - \begin{bmatrix} e^{x} \end{bmatrix}_{0}^{1}$$

$$= \begin{bmatrix} e - 0 \end{bmatrix} - \begin{bmatrix} e^{x} \end{bmatrix}_{0}^{1}$$

$$= \begin{bmatrix} e - 0 \end{bmatrix} - \begin{bmatrix} e^{x} \end{bmatrix}_{0}^{1}$$

$$= \begin{bmatrix} e - 0 \end{bmatrix} - \begin{bmatrix} e^{x} \end{bmatrix}_{0}^{1}$$

$$= \begin{bmatrix} e - 0 \end{bmatrix} - \begin{bmatrix} e^{x} \end{bmatrix}_{0}^{1}$$

$$= \begin{bmatrix} e - 0 \end{bmatrix} - \begin{bmatrix} e^{x} \end{bmatrix}_{0}^{1}$$

$$= \begin{bmatrix} e^{-} e^{x} + 1 = \begin{bmatrix} 1 \end{bmatrix}$$
18. Find the general solution

$$x^{2} \frac{dy}{dx} = \frac{1}{y^{2} + \sqrt{y}}$$
Sol.
$$x^{2} \frac{dy}{dx} = \frac{1}{y^{2} + \sqrt{y}}$$

$$\left(y^{2} + \sqrt{y}\right) dy = \int_{1}^{1} \frac{1}{x^{2}} dx$$
Integrating both sides, we have :

$$\int (y^{2} + \sqrt{y}) dy = \int (\frac{1}{x^{2}}) dx$$

$$\frac{y^{3}}{3} + \frac{y^{\frac{y}{2}}}{\frac{y}{2}} = \frac{x^{-1}}{-1} + c$$
Integrating both sides, we have :

$$\int \frac{1}{y} y^{3} + \frac{y^{\frac{y}{2}}}{\frac{y}{2}} = \frac{x^{-1}}{-1} + c$$
Sol.
$$\left(\frac{1}{x}y^{3} + \frac{2}{3}y^{\frac{y}{2}} = -\frac{1}{x} + c\right)$$
19. Find the general solution

$$\left(e^{x} + e^{-x}\right) \frac{dy}{dx} = \left(e^{x} - e^{-x}\right)$$

$$dy = \left(\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\right) dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int 2x dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int 2x dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int 2x dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int 2x dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int 2x dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int 2x dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int 2x dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int 2x dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int 2x dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int 2x dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int 2x dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int 2x dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int 2x dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int 2x dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int \frac{1}{y} dx$$
Integrating both sides, we have :

$$\int \frac{1}{y} dy = \int \frac{1}{y} dx$$
Integrating both sides, we have :

$$\int \frac{1$$

EDUGATE Up to Date Solved Papers 22 Applied Mathematics-II (MATH-233) Paper B

So, eq.(i) becomes :

$$lny = x^{2} + 0$$

$$lny = x^{2} \Rightarrow y = e^{x^{2}}$$
22. Define differential equation and
give example.
Sol. An equation involving derivatives
or differential equation.
Example: $\frac{dy}{dx} + 2x = 0$
23. What is Fourier Series?
Sol. The infinite sum
 $\frac{a_{0}}{2} + \sum_{n=1}^{\infty} (a_{n} \cos nx + b_{n} \sin nx)$ is
called Fourier series.
24. Find Laplace transform of a
constant 'k'.
Sol. $L \{K\} = KL\{1\} = K(\frac{1}{s}) = \frac{K}{s}$
25. Find the inverse Laplace
transformation of $x = -3$.
Sol. $L^{-1}(\frac{5}{s-3}) = 5e^{3t}$
26. Write Laplace transform of e^{st} .
Sol. $L \{e^{st}\} = \frac{1}{s-a}$
27. Define Laplace transformation.
Sol. $L \{f(t)\} = \int_{0}^{\infty} e^{-st}f(t) dt$, where $t > 0$

Section - II **a** : Attemp any three (3) questions $3 \times 8 = 24$ **[a]** Evaluate $\int \left(\frac{x^4}{x+1}\right) dx$ See Q.12 of Ex # 7.1 (Page # 286) Evaluate $\int (\tan^4 x) dx$ See Q.1(ix) of Ex # 7.3 (Page # 299) a] Integrate by substitution method $\int \frac{dx}{\sqrt{25-16x^2}}$ See Q.1(i) of Ex # 8.2 (Page # 327) Evaluate e^{3x} sin 2x dx. See Q.5(iv) of Ex # 8.3 (Page # 356) **[a]** Solve the $\int_0^{16} \frac{\sqrt{\mathbf{x}}}{1 + \sqrt{\mathbf{x}}} \, \mathrm{d}\mathbf{x}$ See Q.1(xi) of Ex # 9.1 (Page # 379) Find the area of the region enclosed by parabola $y = 2 - x^2$ and line y = -x. See Q.8 of Ex # 9.2 (Page # 392) a] Find the general solution $x\frac{dy}{dx} = y^2 - 3y + 2$ See Q.3 of Ex # 10 (Page # 411) Find the particular solution satisfying the given boundary conditions 2xdx - dy = x(xdy - ydx)given y = 1 when x = -3See Q.16 of Ex # 10 (Page # 419) If f(t) = 2sinwt. Find $L{f(t)}$. See Q.5 of Ex # 12 (Page # 470) ****