EDUGATE Up to Date Solved Papers 25 Applied Mathematics-II (MATH-212) DAE/IIA - 2017 [c] ln(2x+1) [d] 2xln(2x+1)MATH-212 APPLIED MATHEMATICS-II 8. A function is maximum at a point if PART - A (OBJECTIVE) its 2^{nd} derivative is: Time: 30 Minutes Marks:20 [a] +ve [b] -ve Q.1: Encircle the correct answer. [c] zero [d] None of these A function $\mathbf{f}(\mathbf{x}) = \mathbf{x}^2 + 2\mathbf{x} + 3$ is: 1. $(e^{2x})dx = ?$ 9. [a] Odd [b] Even [c] Implicit [d] Explicit [a] $\frac{e^{2x}}{2}$ [b] $\frac{e^{x^2}}{2}$ $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = ?$ 2. [c] $2e^{2x}$ [d] $\frac{e^{2x+1}}{2}$ [b] 1 [a] 0 $\int \left(\frac{\mathbf{a} + \mathbf{x}}{\mathbf{x}}\right) d\mathbf{x} = ?$ $[d] e^2$ [c] e $\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}(\mathbf{a}\mathbf{x}+\mathbf{b})^2 = ?$ 3. **[a]** a $\ell nx + x$ **[b]** $\frac{(ax+b)^2}{2}$ [a] 2(ax+b) [b] 2a(ax+b) $[c] \frac{(ax+b)^3}{3}$ [d] 2(ax+b)b[c] $\ell nx + a$ [d] x + a $\int (\mathbf{a}\mathbf{x} + \mathbf{b})^3 \, \mathrm{d}\mathbf{x} = ?$ 11. If $y = \frac{x+1}{x}$, then $\frac{dy}{dx} = ?$ 4. **[a]** $3(ax+b)^2$ **[b]** $3a(ax+b)^2$ [a] $-\frac{1}{v^2}$ [b] $\frac{x+1}{v^2}$ [c] $\frac{(ax+b)^3}{4a}$ [d] $\frac{(ax+b)^4}{4a}$ [c] $\frac{2}{r^2}$ [d] $\frac{x^2 - 1}{r^2}$ 12. $\int (\cos ec x) dx = ?$ [a] $\ell n (\cos ecx - \cot x)$ $\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}(\cos \mathrm{ec}3\mathbf{x}) =$ 5. [b] ln sec x [a] -cosec3xcot3x [c] $ln(\cos ecx + \cot x)$ [b] -3 cos ec3x cot 3x [d] cosx $[c] \cot 3x$ $[d] \cos ec 3x$ **13.** $\int_{0}^{\frac{\pi}{4}} (\sec^2 x) dx = ?$ $\frac{d}{dx}(a^{x}) = ?$ 6. [a] 1 [b] 2 [a] $a^{x} \ell n a$ [b] $x a^{x-1}$ [c] 0 [d] 3 [c] a^{x-1} [d] a^x **14.** $\int_{1}^{2} (3x^{2}) dx = ?$ $\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}\left\{\ell\mathbf{n}\left(\mathbf{x}^2+1\right)\right\}=?$ 7. [**b**] 8 [a] 7 [c] 6 [d] 9 [a] $\frac{2x}{x^2+1}$ [b] $\frac{x}{x^2+1}$

EDUGATE Up to Date Solved Papers 26 Applied Mathematics-II (MATH-212)

15.	Equation of line in slope intercept	DAE / IIA - 2017			
	form is:	MATH-212 APPLIED MATHEMATICS-II			
	[a] $\frac{x}{a} + \frac{y}{b} = 1$	PART - B(SUBJECTIVE)			
	ab	Time:2:30Hrs Marks:60 Section-1			
	$[\mathbf{b}] \mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{c}$	Q.1:Write short answers to any Twenty Five (25)			
	$[c] y - y_1 = m(x - x_1)$	of the follwing questions. $25 \times 2 = 50$			
	$[d] y + y_1 = m(x + x_1)$				
16.	When two lines are perpendicular:	1. If $\mathbf{f}(\mathbf{x}) {=} rac{1}{1 {-} \mathbf{x}},$ then			
	[a] $\mathbf{m}_1 = \mathbf{m}_2$ [b] $\mathbf{m}_1 \mathbf{m}_2 = -1$	find $\mathbf{f}[\mathbf{f}(5)]$			
	[c] $m_1 = -m_2$ [d] $m_1m_2 = 1$				
17.	The slope of x-axis is:	Sol. As, $f(x) = \frac{1}{1-x} \rightarrow (i)$			
	[a] 0° [b] 30° [c] 45° [d] 60° Give three points are collinear if	Put x = 5 in eq.(i) $f(5) = \frac{1}{1-5} = \frac{1}{-4} = -\frac{1}{4}$ Put x = f(5) in eq.(i)			
	[c] 45° [d] 60°	$f(5) = \frac{1}{1} = \frac{1}{1} = -\frac{1}{1}$			
18.	Give three points are collinear if	1-5 -4 4 Put x = f(5) in eq.(i)			
	their slopes are:				
	[a] Equal [b] Unequal	$f[f(5)] = \frac{1}{1 - (-\frac{1}{4})}$			
	[c] $m_1m_2 = -1$ [d] $m_1m_2 = 1$				
19.	Center of the circle	$=\frac{1}{\frac{4+1}{5}}=\frac{1}{5}=\frac{4}{5}$			
	$(x-1)^2 + (y-2)^2 = 16$ is:				
	[a] $(1, 2)$ [b] $(2, 1)$	2. Find: $\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x}$			
	[c] $(4, 0)$ [d] $(-1, -2)$				
20.	If the radius $\mathbf{r}^2 = \mathbf{g}^2 + \mathbf{f}^2 - \mathbf{c}$ is	Sol. $\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} \left(\frac{0}{0}\right)$ form			
	negative, the circle is:	$= \lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} \times \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1}$			
	[a] Real [b] Imaginary				
	[c] Point [d] None of these	$= \lim_{x \to 0} \frac{\left(\sqrt{1+x}\right)^2 - \left(1\right)^2}{x\left(\sqrt{1+x}+1\right)}$			
Answer Key		$= \lim_{x \to 0} \frac{\cancel{1} + x - \cancel{1}}{x \left(\sqrt{1 + x} + 1\right)}$			
1	d 2 c 3 b 4 a 5 b	63.02			
6	b 7 a 8 b 9 a 10 a	$= \lim_{x \to 0} \frac{x}{x(\sqrt{1+x}+1)}$			
11	d 12 a 13 c 14 a 15 b				
16	b 17 a 18 a 19 a 20 b	$= \lim_{x \to 0} \frac{1}{\sqrt{1+x}+1} = \frac{1}{\sqrt{1+0}+1}$			
,	****	$=\frac{1}{\sqrt{1}+1}=\frac{1}{1+1}=\boxed{\frac{1}{2}}$			

EDUGATE Up to Date Solved Papers 27 Applied Mathematics-II (MATH-212)

<u></u>	OTTEL OP TO BALO BOITOUT APOID		ou machomacioo n (morrin E1E)
3.	Evaluate: Lim	6.	If $y = (3x^2 + 2x + 9)^7$, find $\frac{dy}{dx}$
Sol.	$\lim_{x \to 0} \frac{\tan x}{x} \left(\frac{0}{0}\right) \text{form}$	Sol.	$y = (3x^{2} + 2x + 9)^{7}$ Differentiate both sides w.r.t. 'x':
	$= \lim_{x \to 0} \frac{\sin x}{x \cdot \cos x} \left\{ \because \tan x = \frac{\sin x}{\cos x} \right\}$	$\frac{\mathrm{d}}{\mathrm{dx}}$	$-(\mathbf{y}) = \frac{\mathbf{d}}{\mathbf{dx}} (3\mathbf{x}^2 + 2\mathbf{x} + 9)^7$
	$= \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x}$	$\frac{dy}{dx}$	$\int_{-}^{-} = 7 \left(3x^{2} + 2x + 9 \right)^{6} \left[\frac{d}{dx} \left(3x^{2} + 2x + 9 \right) \right]$
	$=(1).\frac{1}{\cos 0}=\frac{1}{1}=\boxed{1}$	$\frac{dy}{dx}$	$=7(3x^{2}+2x+9)^{6}[3(2x)+2(1)+0]$
4.	Show that the function	dy	$\pi(0^2 + 0^{-1})^6 (0^{-1} + 0^{-1})$
	$f(x) = 2x^3 - 9x$ is even		$=7(3x^{2}+2x+9)^{6}(6x+2)$
	function of x.	earndy	$\frac{V}{c} = 7(6x+2)(3x^2+2x+9)^6$
Sol.	$f(x) = 2x^3 - 9x$	dx	¢ ()()
	Replace 'x' by '-x', we have :		x ² 2
	$f(-x) = 2(-x)^3 - 9(-x)$	7.	Differentiate $\frac{x^2}{1+x^2}$ w.r.t. x^2 .
	$f(-x) = -2x^3 + 9x$	Sol.	Let, $y = \frac{x^2}{1 + x^2}$ and $t = x^2$
	$f(-x) = -(2x^3 - 9x)$		$1 + x^2$ Differentiate both sides w.r.t. 'x':
	f(-x) = -f(x)	d	$d(\mathbf{x}^2)$
	Hence $\mathbf{f}(\mathbf{x})$ is an $\boxed{\mathbf{Odd}}$ function.	dx	$\frac{d}{dx}\left(\mathbf{y}\right) = \frac{d}{dx}\left(\frac{\mathbf{x}^2}{1+\mathbf{x}^2}\right) \text{ {using Quotient Rule}}$
5.	Find $\frac{dy}{dx}$ if $\sqrt{x} + \sqrt{y} = 5$	$\frac{dy}{dx}$	$\frac{d}{dx} = \frac{(1+x^2)\frac{d}{dx}(x^2) - x^2\frac{d}{dx}(1+x^2)}{(1+x^2)^2}$
Sol.	$\sqrt{x} + \sqrt{y} = 5$		
	Differentiate both sides w.r.t. 'x':	dy	$=rac{\left(1+{ m x}^2 ight)\!\left(2{ m x} ight)\!-{ m x}^2\left(0+2{ m x} ight)}{\left(1+{ m x}^2 ight)^2}$
	$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}\left(\sqrt{\mathbf{x}} + \sqrt{\mathbf{y}}\right) = \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}(5)$		X /
	$\frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{2}y^{-\frac{1}{2}}\frac{d}{dx}(y) = 0$	$\frac{dy}{dx}$	$=\frac{2x+2x^{3}-2x^{3}}{\left(1+x^{2}\right)^{2}}$ $\Rightarrow \frac{dy}{dx}=\frac{2x}{\left(1+x^{2}\right)^{2}}$
	6.5 E 832.5		
	$\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0$	$\frac{d}{dx}$	$f(t) = \frac{d}{dx} (x^2)$
	$\frac{1}{2\sqrt{y}}\frac{dy}{dx} = -\frac{1}{2\sqrt{x}}$	dt	dx 1
	$2\sqrt{y} dx 2\sqrt{x}$	dx	$= 2x \Rightarrow \frac{dx}{dt} = \frac{1}{2x}$
	$\frac{\mathrm{dy}}{\mathrm{dx}} = -\left(\frac{1}{2\sqrt{x}}\right) \left(2\sqrt{y}\right)$	usi	ng chain rule : $rac{\mathrm{d} \mathrm{y}}{\mathrm{d} \mathrm{t}} \!=\! rac{\mathrm{d} \mathrm{y}}{\mathrm{d} \mathrm{x}} \!\times\! rac{\mathrm{d} \mathrm{x}}{\mathrm{d} \mathrm{t}}$
	$\frac{\mathrm{d} y}{\mathrm{d} x} = -\frac{\sqrt{y}}{\sqrt{x}} \Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x} = -\sqrt{\frac{y}{x}}$	$\frac{dy}{dt}$	$- = rac{2 \mathrm{x}}{\left(1 + \mathrm{x}^2 ight)^2} imes rac{1}{2 \mathrm{x}} = \left rac{1}{\left(1 + \mathrm{x}^2 ight)^2} ight $

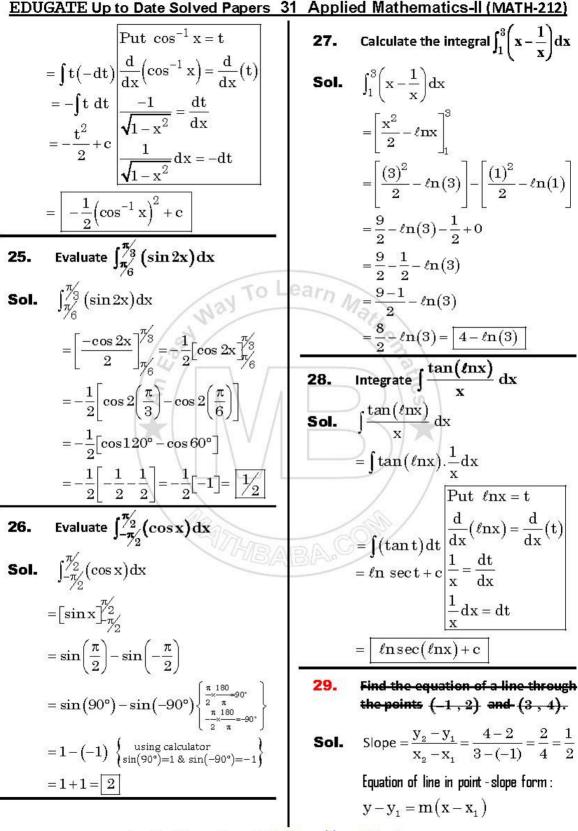
EDUGATE Up to Date Solved Papers 28 Applied Mathematics-II (MATH-212)

8.	If $y = \sqrt{1 + x^2}$, show that $y \frac{dy}{dx} = x$	11.	Find the derivative of $\frac{\tan x}{x^2}$
Sol.	$y = \sqrt{1 + x^2}$ Differentiate both sides w.r.t. 'x':	Sol.	$\frac{d}{dx}\left(\frac{\tan x}{x^2}\right)$ {using Quotient Rule}
	$\frac{d}{dx}(y) = \frac{d}{dx}(\sqrt{1 + x^2})$		$\left(\frac{d}{dx}(\tan x)\right) - \tan x \left(\frac{d}{dx}(x^2)\right)$
	$\frac{dy}{dx} = \frac{1}{2} \left(1 + x^2 \right)^{-\frac{1}{2}} \left(\frac{d}{dx} \left(1 + x^2 \right) \right)$	1.0000	$(\mathbf{x}^2)^2$
	$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{1}{2\sqrt{1+\mathbf{x}^2}} \left(0+2\mathbf{x}\right)$		$\frac{\sec^2 x - \tan x(2x)}{x^4}$
	$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{x}}{\sqrt{1 + \mathrm{x}^2}}$	$=\frac{\mathbf{x}\mathbf{x}\mathbf{x}}{\mathbf{x}\mathbf{x}}$	$\frac{x \sec^2 x - 2\tan x}{x^4} = \frac{x \sec^2 x - 2\tan x}{x^3}$
	L.H.S. = $y \frac{dy}{dy}$ To L	eal?n	Differentiate $\tan^{-1}\sqrt{x}$ w.r.t. 'x'.
	$L.H.S. = y \frac{dy}{dx}$ $= \sqrt{1 + x^{2}} \left(\frac{x}{\sqrt{1 + x^{2}}} \right)$ $= x = R.H.S. \text{ Proved.}$	Sol.	$\frac{\mathrm{d}}{\mathrm{dx}} \left(\tan^{-1} \sqrt{\mathrm{x}} \right)$ $= \frac{1}{1 + (\sqrt{\mathrm{x}})^2} \cdot \frac{\mathrm{d}}{\mathrm{dx}} \left(\sqrt{\mathrm{x}} \right)$
9.	$= x = R.H.S. \text{Proved.}$ Find the derivative of $\cos(\cot x)$		$=\frac{1}{1+x}\cdot\frac{1}{2}(x^{-\frac{1}{2}})=\overline{\frac{1}{2\sqrt{x}(1+x)}}$
Sol.	$\frac{d}{dx}(\cos(\cot x))$	13.	If $y = x^4 - 3x^2 + 4x - 1$, find $\frac{d^2y}{dx^2}$
	$=-\sin(\cot x)\frac{d}{dx}(\cot x)$	Sol.	$y = x^4 - 3x^2 + 4x - 1$ Differentiate both sides w.r.t. 'x':
	$= -\sin(\cot x)(-\cos ec^2 x)$	DA C	$\frac{d}{dx}(y) = \frac{d}{dx}(x^4 - 3x^2 + 4x - 1)$
	$= \frac{\sin(\cot x)(\cos ec^2 x)}{2}$	DIAM	$\frac{dy}{dx} = 4x^3 - 3(2x) + 4(1) - 0$
10.	Find $\frac{d}{dx} \left(e^{2x} \cos 2x \right)$		$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^3 - 6x + 4$
Sol.	$\frac{\mathrm{d}}{\mathrm{dx}} \left(\mathrm{e}^{2\mathrm{x}} \cos 2\mathrm{x} \right)$		Differentiate both sides w.r.t. 'x':
=	$\left(\frac{d}{dx}\left(e^{2x}\right)\right)\cos 2x + e^{2x}\left(\frac{d}{dx}\left(\cos 2x\right)\right)$		$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(4x^3 - 6x + 4\right)$
= e	$2x\left(\frac{d}{dx}(2x)\right)\cos 2x + e^{2x}\left(-\sin 2x\right)\left(\frac{d}{dx}(2x)\right)$		$\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{d} \mathrm{x}^2} = 4 \left(3 \mathrm{x}^2 \right) - 6 \left(1 \right) + 0$
	$= e^{2x} (2) \cos 2x - e^{2x} \sin 2x (2)$ $= \boxed{2e^{2x} (\cos 2x - \sin 2x)}$		$\frac{d^2y}{dx^2} = 12x^2 - 6$

EDUGATE Up to Date Solved Papers 29 Applied Mathematics-II (MATH-212)

14.	Find the derivative of		Differentiate both sides w.r.t. ' x ' :
Sol. $= \left(\frac{d}{dx}\right)^{t}$ $= m \sin t$ $= m \sin t$ $= m \sin t$ $= m \sin t$	$\sin^{2} x \cos^{3} x \text{ w.r.t. 'x'.}$ $\frac{d}{dx} (\sin^{m} x. \sin mx)$ $\sin^{m} x) \sin mx + \sin^{m} x (\frac{d}{dx} (\sin mx))$ $m^{-1} x (\frac{d}{dx} (\sin x)) \sin mx + \sin^{m} x \cos mx (\frac{d}{dx} (mx))$ $\sin^{m-1} x \cos x. \sin mx + \sin^{m} x \cos mx (m)$ $\sin^{m-1} x \cos x \sin mx + m \sin^{m} x \cos mx$ $\sin^{m-1} x [\cos x \sin mx + \sin x \cos mx]$ $\sin^{m-1} x [\sin mx .\cos x + \cos mx \sin x]$		$\frac{d}{dx}(y) = \frac{d}{dx}(x^{3} - 3x^{2} - 24x + 10)$ $\frac{dy}{dx} = 3x^{2} - 3(2x) - 24(1) + 0$ $\frac{dy}{dx} = 3x^{2} - 6x - 24$ For critical values, put $\frac{dy}{dx} = 0$ $3x^{2} - 6x - 24 = 0$ Dividing each term on '3', we get : $x^{2} - 2x - 8 = 0$ $x^{2} - 4x + 2x - 8 = 0$
= m s	$\sin^{m-1} x \sin(1+m) x$		x = 4x + 2x = 0 = 0 x(x-4) + 2(x-4) = 0
15. Sol.	If $s = \sin 2t$, find the velocity at $t = \frac{\pi}{6}$. $s = \sin 2t$ Differentiate both sides w.r.t. 't': $v = \frac{ds}{dt} = \frac{d}{dt}(\sin 2t)$ $v = \cos 2t \left(\frac{d}{dt}(2t)\right)$ $v = \cos 2t (2(1))$ $v = 2\cos 2t$ At $t = \frac{\pi}{6}$ $v \Big _{t=\frac{\pi}{6}} = 2\cos 2\left(\frac{\pi}{6}\right)$ $v \Big _{t=\frac{\pi}{6}} = 2\left(\frac{1}{2}\right) = [1]$	17. Sol.	(x-4)(x+2) = 0 Either OR $x-4=0$ $x+2=0$ $x=-2$ Find $\int \left(x+\frac{1}{x}\right)^2 dx$ $\int \left(x+\frac{1}{x}\right)^2 dx$ $= \int \left(x^2+\frac{1}{x^2}+2\right) dx$ $= \int \left(x^2+x^{-2}+2\right) dx$ $= \frac{x^3}{3} + \frac{x^{-1}}{-1} + 2x + c$ $= \boxed{\frac{x^3}{3} - \frac{1}{x} + 2x + c}$
16.	Find the turning points of the	18.	Find $\int \left(\frac{x^2}{4+x^2}\right) dx$
Sol.	function $x^3 - 3x^2 - 24x + 10$ Let $y = x^3 - 3x^2 - 24x + 10$	Sol.	$\int \! \left(rac{{{{\mathbf{x}}^{2}}}}{{4+{{\mathbf{x}}^{2}}}} ight) \! d{\mathbf{x}} = \left\{ {\substack{ \text{Improper} \\ \text{Fraction} }} ight\}$

EDUGATE Up to Date Solved Papers 30 Applied Mathematics-II (MATH-212) Integrate $\int \frac{\cos(\ell nx)}{dx} dx$ $=\int \left(1-\frac{4}{4+x^2}\right)dx$ 22. $= \int \left(1 - \frac{4}{(2)^{2} + (x)^{2}}\right) dx \begin{vmatrix} x^{2} + 4 \\ x^{2} \\ \pm x^{2} \\ \pm 4 \end{vmatrix}$ Sol. $\int \frac{\cos(\ell nx)}{dx} dx$ $=\int \cos(\ell nx) \cdot \left(\frac{1}{x}\right) dx$ $= x - 4 \cdot \frac{1}{2} \tan^{-1} \left(\frac{x}{2} \right) + c$ Put lnx = t $= \left| x - 2 \tan^{-1} \left(\frac{x}{2} \right) + c \right|$ $\frac{d}{dx}(\ell nx) = \frac{d}{dx}(t)$ $\left|\frac{1}{\mathbf{v}} = \frac{\mathrm{dt}}{\mathrm{dv}}\right|$ Find ∫(e⁸* ≯e⁵* dx 19. $= \boxed{\frac{e^{3x}}{3} + \frac{e^{5x}}{5} + c} \left\{ \begin{array}{c} \text{Using formula \# 05} \\ \text{from page \# 282} \end{array} \right\}$ **Sol.** $\int \left(e^{3x} + e^{5x}\right) dx$ Evaluate $\left[\left(\tan^4 x + \tan^2 x \right) dx \right]$ $=\sin t + c = |\sin(\ell nx) + c|$ 20. $\int (\tan^4 x + \tan^2 x) dx$ Sol. Evaluate $\int (\mathbf{x} e^{\mathbf{x}}) d\mathbf{x}$ 23. $= \int \tan^2 x (\tan^2 x + 1) dx$ $\int (x e^x) dx$ Sol. $= \int \tan^2 x. \sec^2 x \, dx \, \because \left\{ \begin{smallmatrix} 1 + \tan^2 x \\ -\sec^2 x \end{smallmatrix} \right\}$ Integrating by parts: taking $u = x \& v = e^x$ $=\frac{\tan^3 x}{2}+c=\left|\frac{1}{2}\tan^3 x+c\right|$ $= x \int e^{x} dx - \int \left(\frac{d}{dx}(x) \int e^{x} dx\right) dx$ Find $\int x^4 \sec^2(x^5) dx$ 21. $= x e^x - \int 1 e^x dx$ **Sol.** $\int x^4 \sec^2(x^5) dx$ $= x e^{x} - \int e^{x} dx$ $=\int \sec^2(x^5)x^4dx$ $= x e^{x} - e^{x} + c = | e^{x} (x-1) + c$ $= \int \left(\sec^2 t\right) \frac{dt}{5} \quad \frac{\operatorname{Put} x^5 = t}{\frac{d}{d_2} \left(x^5\right) = \frac{d}{d_2} \left(t\right)}$ **24.** Integrate $\int \frac{\cos^{-1} x}{\sqrt{1-x^2}} dx$ $=\frac{1}{5}\int \left(\sec^2 t\right) dt \bigg|_{5x^4}^{4x} = \frac{dt}{dx}$ Sol. $\int \frac{\cos^{-1} x}{\sqrt{1-x^2}} dx$ $=\frac{1}{5}\tan t + c \quad \left| x^4 dx = \frac{dt}{5} \right|$ $=\int \cos^{-1} x \cdot \frac{1}{\sqrt{1-x^2}} dx$ $=\left|\frac{1}{z}\tan x^{5}+c\right|$



EDUGATE Up to Date Solved Papers 32 Applied Mathematics-II (MATH-212)

$$y-2 = \frac{1}{2}(x - (-1))$$

2(y-2)=1(x+1)
2y-4=x+1
2y-4-x-1=0
-x+2y-5=0 $\Rightarrow x-2y+5=0$

30. Find the distance between
(-4,2) & (0,5).
Sol.
$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

 $D = \sqrt{(-4 - 0)^2 + (2 - 5)^2}$

$$D = \sqrt{(-4)^{2} + (-3)^{2}}$$
$$D = \sqrt{16 + 9} = \sqrt{25} = 5$$

31. Find an equation of the line with slope $-\frac{2}{3}$ and having y-intercept 3.

Sol. Here :
$$m = -\frac{2}{3}$$
 & $c = 3$
Equation of line in slope - intercept form
 $y = mx + c$

$$y = \frac{-2}{2}x + 3$$

Multipling each term both sides by 3, we get : $\label{eq:starses} 3y = -2x + 9$

$$3\mathbf{y} + 2\mathbf{x} - 9 = 0 \Longrightarrow 2\mathbf{x} + 3\mathbf{y} - 9 = 0$$

32. Show that the points (1, 9), (-2, 3) and (-5, -3) are collinear.

Sol.
$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 9 & 1 \\ -2 & 3 & 1 \\ -5 & -3 & 1 \end{vmatrix}$$

= $1 \begin{vmatrix} 3 & 1 \\ -3 & 1 \end{vmatrix} - 9 \begin{vmatrix} -2 & 1 \\ -5 & 1 \end{vmatrix} + 1 \begin{vmatrix} -2 & 3 \\ -5 & -3 \end{vmatrix}$
= $1(3 - (-3)) - 9(-2 - (-5)) + 1(6 - (-15))$

=1(3+3)-9(-2+5)+1(6+15)=1(6)-9(3)+1(21)=6-27+21=0Hence given points are collinear. Proved. 33. Find 'k' so that the lines x-2y+1=0, 2x-5y+3=0, and 5x + 9y + k = 0 are concurrent. Sol. As the given lines are concurrent, so $\begin{vmatrix} 2 & -5 & 3 \\ 5 & 9 & k \end{vmatrix} = 0$ $\Rightarrow 1 \begin{vmatrix} -5 & 3 \\ 9 & k \end{vmatrix} - (-2) \begin{vmatrix} 2 & 3 \\ 5 & k \end{vmatrix} + 1 \begin{vmatrix} 2 & -5 \\ 5 & 9 \end{vmatrix} = 0$ o Lear 1(-5k-27)+2(2k-15)+1(18+25)=0-5k - 27 + 4k - 30 - 43 = 0-k - 14 = 0 $-k = 14 \implies k = -14$ 34. What type of circle is represented by $x^2 + v^2 - 2x + 4v + 8 = 0$ $x^{2} + y^{2} - 2x + 4y + 8 = 0$ Sol. Comparing this equation with general form of equation of circle: $x^2 + y^2 + 2gx + 2fy + c = 0$ 2g = -2 | 2f = 4 $\frac{2g}{g} = -\frac{2}{2} \left| f = \frac{4}{2} \right| c = 8$ g = -1 | f = 2Radius = $\mathbf{r} = \sqrt{\mathbf{g}^2 + \mathbf{f}^2 - \mathbf{c}}$ $r = \sqrt{(-1)^2 + (2)^2 - 8}$ $\mathbf{r} = \sqrt{1+4-8} = \sqrt{-3} = \overline{\sqrt{3}i}$ So, it is an Imaginary circle. 35. Write the equation of circle with, center at (h, k) and radius 'r'. $(x-h)^{2} + (y-k)^{2} = r^{2}$ Sol.

EDUGATE Up to Date Solved Papers 33 Applied Mathematics-II (MATH-212)

- **36.** Find center and radius of the circle $x^{2} + y^{2} + 9x - 7y - 33 = 0$
- Sol. Comparing with general equation of circle.

$$x^{2} + y^{2} + 9x - 7y - 33 = 0$$

$$2g = 9 | 2f = -7 | c = -33$$

$$g = \frac{9}{2} | f = -\frac{7}{2} | c = -33$$
Center = $(-g, -f) =$
Center = $\left(-\frac{9}{2}, -\left(-\frac{7}{2}\right)\right) = \left[\frac{-\frac{9}{2}, \frac{7}{2}}{2}\right]$
Radius = $r = \sqrt{g^{2} + f^{2} - c}$

$$r = \sqrt{\left(\frac{9}{2}\right)^{2} + \left(-\frac{7}{2}\right)^{2} - (-33)}$$

$$r = \sqrt{\frac{81}{4} + \frac{49}{4} + 33}$$

$$r = \sqrt{\frac{81 + 49 + 132}{4}}$$

37. Write the general form of the circle, also represent the center and radius in this form.

 $r = \sqrt{\frac{262}{4}} = \left|\sqrt{\frac{131}{2}}\right|$

Sol. $x^2 + y^2 + 2gx + 2fy + c = 0$ Center = (-g, -f)& Radius = $\sqrt{g^2 + f^2 - c}$

Section - II

Note : Attemp any three (3) questions $3 \times 10 = 30$

Q.2[a] Evaluate $\lim_{\theta \to 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta}$

- **Sol.** See Q.1(x) of Ex # 1.3 (Page # 25)
- [b] Find $\frac{dy}{dx}$ when $x = \frac{a(1-t^2)}{1+t^2}$ and $y = \frac{2bt}{1+t^2}$ Sol. See Q.3 (iv) of Ex # 2.3 (Page # 72)

Q.3.[a] If $y = \tan \left(2 \tan^{-1} \frac{x}{2} \right)$ Prove that: $\frac{dy}{dx} = 4 \left(\frac{1+y^2}{4+x^2} \right)$. Sol. See example #10 of Chapter 03. Find the maximum and minimum [b] values of the function $\frac{x^3}{2} - \frac{3x^2}{2} + 2x + 5$ **Sol.** See Q.2(iv) of Ex # 4.2 (Page # 187) **Q.4.[a]** Integrate $\int \left(\frac{1}{\sqrt{1+x}-\sqrt{x}}\right) dx$ Lea **Sol.** See Q.16 of Ex # 5.1 (Page # 232) Evaluate $\int (\tan x + \cot x)^2 dx$ [b] **Sol.** See Q.10 of Ex # 5.2 (Page # 238) Q.5.[a] Integrate (x*tan x)dx **Sol.** See Q.2(ii) of Ex # 6.3 (Page # 285) [b] Show that the points A(2, 3), B(0, -1), C(-2, 1) are the vertices of an isosceles triangle. **Sol.** See Q.2[c] of Ex # 8.1 (Page # 355) Q.6.[a] Show that the two lines passing through the given points are perpendicular (0, -7), (8, -5) and (5, 7), (8, -5). **Sol.** See Q.1[a] of Ex # 8.3 (Page #373) [b] Find the equation of the circle having (-2, 5) and (3, 4) as the end points of its diameter. Find also its center and radius. **Sol.** See Q.8 [a] of Ex # 9 (Page # 447) *****