EDUGATE Up to Date Solved Papers 8 Applied Mathematics-II (MATH-233) Paper A

	DAE / IIA	- 2016			1	$\frac{b}{dx}$	32	1_9	- -				
		DMATHEMATICS-II		-		dx		1					
	PAPER 'A' PART	- A(OBJECTIVE)			[a] e	^{3x-1} [b] e	×-1 [0	:] 3e	ə ^{3x} [c] 3x	e ^{3x}
Time: 30 Minutes Marks: 15			6).	$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left[\ell \mathbf{n} \left(\mathbf{x}^2 + 1 \right) \right] = ?$								
Q.1: Encircle the correct answer.			1 3		3	dx		A	· -).]			
1.	A function ${f f}$ ($(x) = x^2 + 2x + 3$ is:			ſ	a] — ×	X	_	ľk	n	2x		
	[a] Odd	[b] Even						-		1	- -		
	[c] Implicit]	c] ℓ	n(2	x + 1	1) [d	l] 2x	ln	(2x	+1)
2.	$\lim_{x\to 2} (x-1) =$?	1	0.	ŀ	f <u>dy</u>	, - ch	ange	es sie	zn fr	om	+ve	to
	[a] 1	[b] 2				UA	-						
	[c] 3	[d] 4				-ve			an a				
3.	lim sin 0	9				a] M clun				1978		a of th	050
	$\lim_{\theta \to \frac{\pi}{2}} \frac{\sin \theta}{\theta} =$. TO	Lear	11.	-								
	π	[c] $\frac{2}{\pi}$ [d] $\frac{1}{2}$			1	ts 2^r					ri at	a po	int if
	[a] 1 [b] $\frac{\pi}{2}$	[c] $\frac{-}{\pi}$ [d] $\frac{-}{2}$				ts ⊿ a] +					7e		
	$d_{(arr+b)^2}$	1401										of th	ese
4.	$\frac{d}{dx}(ax+b)^2$		l e	2.		ecor	S. I		-	_			
	[a] $2(ax+b)$	[b] $2a(ax+b)$		_	1 1	T	Q1					d] 2x	²
			1 1	3.		A set	2	120	575	55	575	al	2
	[c] <u> </u>	[d] $2(ax+b)b$		1.1 <u>.1.1</u> .1 <u>.</u> 7	- al 8	a] C							
5.	If $y = y^2$ on	d u = x then $\frac{dy}{dx}$ = ?	1		1	b] D	isco	ntinu	ious				
э.	n y–u an	$d u = x \text{ then } \frac{d u}{dx} = $			Л	c] Po	pul	atior	n [d	l] Sa	Imp	le	
	[a] 2x	[b] u ²		$\langle a \rangle$	Ø.	9/			ä	(D	1 + 1) th	alue
	[c] x	[d] 2x ²	ABA	4.	\geq	vner	nnı	soa	α της	▫(-	2	ſ	aiue
6.	$-\frac{\mathbf{d}}{\mathbf{d}\mathbf{x}}(\sin \mathbf{x}^3)$	=?			i	s call	led:						
	dx'				- 22	a] Ⅳ				and the second second			
	9	3		19 <u>123</u>	- 27	122			- 27	1472-14			Vlean
	17 17 NOV 10 NOV	[b] $-\cos x^3$	1	5.		A sin					of a	n	
		[d] $3x^2 \cos x^3$				exper a] A					-11		
7.	$\frac{d}{dx}$ tan x	2 = ?			100	0.076				1977 S. 1		e spa	ace
					L	c] O		nsw			mpn	c spr	
	[a] $\frac{1}{1+x^2}$	[b] <u> </u>	Г	1		~		1	- 200724	 	312	-	32.1
				1	d d	2	a	3	c	4	b	5	a
	[c] $\frac{2x}{1+x^4}$	[d] $\frac{2x}{1-x^4}$	-	6 11	d b	7 12	c a	8 13	c c	9 14	b c	10 15	a b
	$\mathbf{I} + \mathbf{X}$	I - X				***			- 10. G.		100.0	10208	
			1						A A 7			а Л	

Available online @ https://mathbaba.com

EDUGATE Up to Date Solved Papers 9 Applied Mathematics-II (MATH-233) Paper A

DAE / IIA - 2016
MATH - 233 APPLIED MATHEMATICS - II
PAPER 'B' PART - B(SUBJECTIVE)
Time : 2 : 30 Hrs Marks : 60
Section - I
Q.1. Write short answers to any
Eighteen (18) questions.
1. Find the value of

$$f\left(\frac{1}{x}\right)$$
, if $f(x) = \frac{1}{x^2 + 4}$
Sol. $f(x) = \frac{1}{x^2 + 4}$
Replace x by $\frac{1}{x}$, we have :
 $f\left(\frac{1}{x}\right) = \frac{1}{\left(\frac{1}{x}\right)^2 + 4}$
2. Show that the function
 $f(x) = x^4 - 7x^2 + 7$
Replace x by $-x$, we have :
 $f(-x) = (-x)^4 - 7(-x)^2 + 7$
 $f(-x) = f(x)$
Hence f(x) is an even function. Proved.
3. Evaluate: $\lim_{x \to 2} \frac{x^2}{x + 1}$
Sol. $\lim_{x \to 3} \frac{x^2}{x} + \frac{2y}{b^2}$
4. Evaluates the limity. $\lim_{x \to 9} \frac{x^2}{x}$
Marks : 60
Sol. $\lim_{x \to 9} \frac{\sin^2 x}{x^2}$
Sol. $\lim_{x \to 9} \frac{\sin^2 x}{x^2}$
Sol. $\lim_{x \to 9} \frac{\sin^2 x}{x^2}$
Sol. $\lim_{x \to 9} \frac{x^2}{x^2} + \frac{2y}{b^2} = 1$
Sol. $\lim_{x \to 2} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
Sol. $\lim_{x \to 2} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
Sol. $\lim_{x \to 2} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
Sol. $\lim_{x \to 2} \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{dx}$
(1)
 $\frac{2x}{2x} + \frac{2y}{2y} = \frac{d}{dx}$
 $\frac{dy}{2x} = -\frac{2x}{a^2} + \frac{b^2}{2y} = \frac{dy}{dx} = -\frac{b^2x}{a^2y}$
Sol. $\lim_{x \to 2} \frac{x^2}{x + 1} = \frac{(-2)^2}{a^2} + \frac{4}{a^2} = \frac{1}{a^2}$
Sol. $\lim_{x \to 2} \frac{x^2}{a^2} + \frac{2y}{b^2}$
Sol. $\lim_{x \to 2} \frac{x^2}{a^2} + \frac{b^2}{a^2}$
Sol. \lim_{x

EDUGATE Up to Date Solved Papers 10 Applied Mathematics-II (MATH-233) Paper A

$$\begin{aligned} \frac{d}{dx}(y) &= \frac{d}{dx} (3x^2 + 2x + 9)^7 \\ \frac{dy}{dx} &= 7 (3x^2 + 2x + 9)^6 \left[\frac{d}{dx} (3x^2 + 2x + 9) \right] \\ \frac{dy}{dx} &= 7 (3x^2 + 2x + 9)^6 \left[3(2x) + 2(1) + 0 \right] \\ \frac{dy}{dx} &= 7 (3x^2 + 2x + 9)^6 (6x + 2) \\ \frac{dy}{dx} &= 7 (6x + 2) (3x^2 + 2x + 9)^6 \end{aligned}$$

8. Find the derivative of $(ax^2 + b)(cx^2 + d)$ w.r.t. 'x'.

Sol.
$$\frac{d}{dx} \Big[(ax^2 + b)(cx^2 + d) \Big]$$

{using Product Rule}
 $= \Big(\frac{d}{dx} (ax^2 + b) \Big) (cx^2 + d) + (ax^2 + b) \Big(\frac{d}{dx} (cx^2 + d) \Big)$
 $= (a(2x)+0)(cx^2+d) + (ax^2+b)(c(2x)+0)$
 $= 2ax(cx^2+d) + (ax^2+b)2cx$
 $= 4acx^3 + 2adx + 2bcx = 2x(2acx^2 + ad + bc) \Big]$

9. Differentiate
$$\frac{\mathbf{x}^2}{\mathbf{1} + \mathbf{2}^2}$$
 w.r.t.

 $\begin{aligned}
\mathbf{1+x^{2}} & = \frac{1+x^{2}}{dx} \left\{ \begin{array}{c} 1+x^{2} \\ 1+x^{2} \end{array} \right\} \\
&= \frac{\left(1+x^{2}\right)\left(\frac{d}{dx}\left(x^{2}\right)\right) - x^{2}\left(\frac{d}{dx}\left(1+x^{2}\right)\right)}{\left(1+x^{2}\right)^{2}} \\
&= \frac{\left(1+x^{2}\right)\left(2x\right) - x^{2}\left(0+2x\right)}{\left(1+x^{2}\right)^{2}} \\
&= \frac{2x+2x^{3}-2x^{3}}{\left(1+x^{2}\right)^{2}} = \left[\frac{2x}{\left(1+x^{2}\right)^{2}} \right]
\end{aligned}$

10. Find the derivative
$$\sin x^{n} \text{ w.r.t. 'x'}$$
.
Sol. $\frac{d}{dx}(\sin x^{n}) = \cos x^{n} \frac{d}{dx}(x^{n})$
 $= \cos x^{n} .nx^{n-1} \left(\frac{d}{dx}(x)\right)$
 $= n \cos x^{n} .x^{n-1} .(1) = \underline{nx^{n-1} \cos x^{n}}$
11. Differentiate $\cot^{3}(3x + 1)$
Sol. $\frac{d}{dx}(\cot^{3}(3x + 1))$
 $= 3 \cot^{2}(3x + 1) \left(\frac{d}{dx}(\cot(3x + 1))\right)$
 $= 3 \cot^{2}(3x + 1) .(-\cos e^{2}(3x + 1)) \left(\frac{d}{dx}(3x + 1)\right)$
 $= -3 \cot^{2}(3x + 1) \cos e^{2}(3x + 1) \left(\frac{d}{dx}(3x + 1)\right)$
 $= -3 \cot^{2}(3x + 1) \cos e^{2}(3x + 1) \left(\frac{d}{dx}(3x + 1)\right)$
 $= -9 \cot^{2}(3x + 1) \cos e^{2}(3x + 1)$
12. Differentiate $\frac{\sin x}{1 - \cos x} \text{ w.r.t. 'x'}$.
Sol. $\frac{d}{dx} \left(\frac{\sin x}{1 - \cos x}\right) \left\{ \frac{\text{using}}{\text{Quotient Rule}} \right\}$
 $= \frac{(1 - \cos x) \left(\frac{d}{dx}(\sin x)\right) - \sin x \left(\frac{d}{dx}(1 - \cos x)\right)}{(1 - \cos x)^{2}}$
 $= \frac{(1 - \cos x) \cos x - \sin x (0 - (-\sin x))}{(1 - \cos x)^{2}}$
 $= \frac{\cos x - \cos^{2} x - \sin^{2} x}{(1 - \cos x)^{2}}$
 $= \frac{\cos x - (\cos^{2} x + \sin^{2} x)}{(1 - \cos x)^{2}}$
 $= \frac{\cos x - (\cos^{2} x + \sin^{2} x)}{(1 - \cos x)^{2}}$
 $= \frac{(-(1 - \cos x))^{2}}{(1 - \cos x)^{2}} = \left[-\frac{1}{1 - \cos x}\right]$

EDUGATE Up to Date Solved Papers 11 Applied Mathematics-II (MATH-233) Paper A

EDUGATE Up to Date Solved Papers 12 Applied Mathematics-II (MATH-233) Paper A

_			-ip pire	d iriden	emacres n				
	x f fx			=	$\left(\frac{5+1}{2}\right)$ th =	3th value			
	1 2 2			×	- /				
	3 7 21					is the third value			
Sol.	5 11 55			W	which is $=$	4			
	7 5 35		24.	Find	-standard (deviation of the			
	9 4 36			valu	es: 2, 4, (6, 8, 10.			
	$\Sigma f = 30$ $\Sigma f x =$	156	Sol.	i.					
	$\Sigma fr = 156$			x	x ²	$\sum \mathbf{x}^2 (\Sigma \mathbf{x})^2$			
	$A.M. = \frac{\Sigma fx}{\Sigma f} = \frac{156}{30} = 1$	5.2	2	2	4	$S.D. = \sqrt{\frac{\sum x^2}{n}} - \left(\frac{\sum x}{n}\right)^2$			
21.	If displacement is $s = s$	sin 2t , find,		4	16	$(220) (30)^2$			
	its acceleration.	55 . 25	-	6	36	$\sigma = \sqrt{\left(\frac{220}{5}\right) - \left(\frac{30}{5}\right)^2}$			
Sol.	s = sin 2t		-	8	64				
	Differentiate both side	s w.r.t. 't'io Lea	arn	10	100	$\sigma = \sqrt{44 - 36}$			
	$u = ds = d_{(ain 2t)}$	Was	2	<u>5</u> x = 30	$\sum x^2 = 220$	$\sigma = \sqrt{8} = 2.83$			
	$v = \frac{1}{dt} = \frac{1}{dt} (\sin 2t)$	3	25.	lf a t	die is rolled	d once, what is the			
	$v = \frac{ds}{dt} = \frac{d}{dt} (\sin 2t)$ $v = \cos 2t \left(\frac{d}{dt} (2t)\right)$		probability of getting an even						
	$v = \cos 2t \left(\frac{dt}{dt} \left(\frac{2t}{dt} \right) \right)$				iber?				
	$\mathbf{v} = \cos 2\mathbf{t} \left(2(1) \right) = 2 \cos 2\mathbf{t} \left(2(1) \right)$	s2t	Sol. $S = \{1, 2, 3, 4, 5, 6\}$, $n(S) = 6$ Let A be event that even number						
	dv d	(
	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{t}} = \frac{\mathrm{d}}{\mathrm{d}\mathbf{t}} \left(2\cos 2\mathbf{t}\right)$			appe		(\mathbf{A}) \mathbf{a}			
	$a(\cdot, a)(d)$	1			. / .	, $n(A) = 3$			
	$\mathbf{a} = 2\left(-\sin 2t\right) \left(\frac{\mathrm{d}}{\mathrm{d}t}\left(2t\right)\right)$		_	P($\Lambda = \frac{n(A)}{A}$	$=\frac{3}{6}=\frac{1}{2}$			
	$\mathbf{a} = 2(-\sin 2t)(2(1))$	CITHE ALE	A C	QYY	n(S)	6 2			
	$a = \overline{-4\sin 2t}$	" MEMALE	26.	Diffe	erentiate s	sin(lntanx)			
22.	Define length of a class	intopyal	Sol.		[sin(ℓnta	un v)]			
Sol.	The difference between	C11	oon	dx					
oon	lower class boundaries			= 0	∞s(ℓntan	$(x)\frac{d}{dx}(\ell n \tan x)$			
	of class interval of that	-							
0	is denoted by 'h'.			= c	os(ℓntan	$(1x)\frac{1}{\tan x}\frac{d}{dx}(\tan x)$			
23.	Find the median of 4, 3	, 5, 2, 11.				325			
Sol.	Write the value in asce	nding order		= 0	∞s(ℓntan	$(x)\frac{1}{\tan x} \sec^2 x$			
	2, 3, 4, 5, 11	This are		2		and the second se			
	Here n = 5			=	cos(ℓntai	$nx) \sec^2 x$			
	$Median = \left(\frac{n+1}{2}\right) th$	value	e		ta	n x			

EDUGATE Up to Date Solved Papers 13 Applied Mathematics-II (MATH-233) Paper A

EDOORTE OP to Date Solved Papers 13
27. Find the value of
$\frac{d}{dx}(\sin^{-1}x)$
Sol. $\frac{d}{dx} \left(\sin^{-1} x + \cos^{-1} x \right)$
$=\frac{1}{\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}}$
$=$ $\boxed{0}$
Section - II
Note : Attemp any three (3) questions $3 \times 8 = 24$
Q.2.(a) Show that $\frac{e^x + 1}{e^x - 1}$ is an odd function of x.
function of x.
Sol. See $Q.12(i)$ of $Ex # 1.1$ (Page # 10)
(b) Evaluate $\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta^2}$
Sol. See example # 11(i) of Chapter 01.
Q.3.(a) Differentiate $\sqrt{\frac{1+x}{1-x}}$ w.r.t. 'x'.
Sol. See $Q.4(iv)$ of $Ex # 2.2(Page # 57)$
(b) Differentiate $\frac{\mathbf{x}^2}{1+\mathbf{x}^2}$ w.r.t. \mathbf{x}^4
Sol. See example #16 of Chapter 02.
Q.4.(a) If $y = a \sin \theta + b \cos \theta$ show that

$$\mathbf{y}^2 + \left(\frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{\theta}}\right)^2 = \mathbf{a}^2 + \mathbf{b}^2$$

Sol. See Q.7(i) of $Ex \, \# \, 3.1 \left(\text{Page} \ \# \, 122 \right)$

(b) Find
$$\frac{dy}{dx}$$
 for the $ln\left(\frac{e^x+1}{e^x-1}\right)$

Sol. See Q.2(iv) of Ex # 3.3 (Page # 145)

Q.5. Discuss for relative maxima and minima of the function

 $\mathbf{y} = \mathbf{x}^3 - 3\mathbf{x}^2 + 2$

Sol. See Q.3(i) of $Ex \, \# \, 4.2 \, (\mbox{Page} \ \# \, 198)$

Q.6. Calculate mode of following data:

Weekly Wages	No. of workers
0-4	5
4-8	15
8-12	22
12 - 16	28
16 - 20	45
20 - 24	25
24 - 28	13
28 - 32	6

Sol. See Q.9 of Ex # 5.1 (Page # 236)
