

# EDUGATE Up to Date Solved Papers 35 Applied Mathematics-II (MATH-233) Paper B

| МАТ                             | andra and an and a second and a s | A - 2019                                      | 7.    |                                        | $\int_{1}^{3}$                | e <sup>2</sup> x                         | đx:              | =?                |                  |       |                   |             |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------|----------------------------------------|-------------------------------|------------------------------------------|------------------|-------------------|------------------|-------|-------------------|-------------|
| MATH-233 APPLIED MATHEMATICS-II |                                                                                                                 |                                               |       |                                        | - <b>-</b> - •                |                                          | _                | _                 | $e^{2i}$         | ĸ     |                   |             |
| PAPER 'B' PART - A (OBJECTIVE)  |                                                                                                                 |                                               |       | [a] $e^6 - e^2$ [b] $\frac{e^{2x}}{2}$ |                               |                                          |                  |                   |                  |       |                   |             |
|                                 | e:30 Minutes                                                                                                    |                                               |       |                                        | <b>,</b> 1                    | 1.6                                      | , _2             | )<br>Ta           | <b>1</b>         | 6     | 2)                |             |
| Q.1:                            | Encircle th                                                                                                     | e correct answer.                             |       |                                        | [c] $\frac{1}{2}$             | -(e                                      | + e-             | ) [a              | $\frac{1}{2}$    | e -   | - e- J            |             |
| 1.                              | $\int (\mathbf{a}\mathbf{x} + \mathbf{b}) \mathbf{d}\mathbf{x}$ $(\mathbf{a}\mathbf{x} + \mathbf{b})^2$         |                                               | 8.    |                                        | $\int_{1}^{2} (3x)$           | x <sup>2</sup> )d                        | lx =             | ?[a]              | 7 <b>[b</b>      | ]8[   | :]6[              | <b>d]</b> 9 |
|                                 | [a] $\frac{(un+v)}{2a}$                                                                                         | [b] $\frac{(ax+b)^2}{2}$                      | 9.    |                                        | An e                          | auat                                     | ion i            | nvol              | ving             | one   | orn               | ore         |
|                                 | 24                                                                                                              | ) [d] $a(ax+b)$                               |       |                                        | deriv                         | NB22                                     |                  |                   | 100              |       |                   |             |
|                                 |                                                                                                                 |                                               |       |                                        | [a] C                         | luad                                     | ratic            | [b                | ] Lin            | iear  |                   |             |
| 2.                              | $\int \left(\frac{\mathbf{a} + \mathbf{x}}{\mathbf{x}}\right) d\mathbf{x}$                                      | =?                                            |       |                                        | [c] D                         | iffer                                    | entia            | al <b>[d</b>      | ] Cu             | bic   |                   |             |
|                                 |                                                                                                                 |                                               | 10    |                                        | Orde                          | r of                                     | diffe            | rent              | ial e            | quat  | tion              |             |
|                                 | [a] a ℓnx + x                                                                                                   | $[b] \frac{(ax+b)^2}{2}$ $[d] x+a$ $dx = ?$   | Learn | Ma                                     | $\left(\frac{d^3}{dx}\right)$ | $\left(\frac{y}{3}\right)^2$             | $+\frac{dy}{dy}$ | $\frac{v}{x} + y$ | v = 0            | ) is: |                   |             |
|                                 | [c] lnx + a                                                                                                     | [d] x + a                                     |       |                                        | [a] 2                         | 1 n                                      | <b>hl</b> 1      |                   | ] 0              | [d]   | 13                |             |
| 3.                              | $\int \left[ \frac{\operatorname{cosec}^2 \mathbf{x}}{\mathbf{x}} \right]$                                      | dx = ? / 4/ / / / / / / / / / / / / / / / /   | 11    |                                        | If an                         | odd                                      | func             | tion              | , the            | n Fe  | urie              | f           |
|                                 | ( cotx )                                                                                                        |                                               |       |                                        | coefi                         | licier                                   | <del>ו</del> ŧ'a | ., <b>'</b> ∔     | <del>s;</del>    |       |                   |             |
|                                 | $[a] -\ell n \cot x$                                                                                            |                                               |       | _                                      | <b>[a]</b> 0                  |                                          | 100 00           | 188 J. 1          |                  | [d]   | 2                 |             |
|                                 | [c] $\frac{\cot^2 x}{}$                                                                                         | [d] $ln(\cos ec^2x)$                          | 12    |                                        | <del>lf an</del>              | ever                                     | fun              | ctio              | <del>n, th</del> | e Fo  | urie              | £           |
|                                 | $\sim$ $^{2}$                                                                                                   |                                               |       |                                        | coefi                         | licier                                   | ₩'b              | • <b>•</b> ' ∔    | <del>5</del> ;   |       |                   |             |
| 4.                              | $\int \frac{1}{\sqrt{1-x^2}} dx$                                                                                | $\mathbf{x} = \mathbf{x}$                     |       |                                        | <b>[a]</b> C                  | ) /[I                                    | <b>b]</b> 1      | [c                | ] -1             | [d]   | 2                 |             |
|                                 | $\int \sqrt{1-x^2}$                                                                                             |                                               | 13    | 1                                      | L-I                           |                                          | -? [             | a <b>l</b> 1      | [b] 2            | 2 [c] | 3 <b>i</b> d      | 14          |
|                                 | <b>[a]</b> sin <sup>-1</sup> x                                                                                  | <b>[b]</b> cos <sup>-1</sup> x                | ADA   | 20                                     | 1                             | (s)                                      | <                | -1 -              | r                | . [-] | ~ I~              |             |
|                                 | [c] $\sec^{-1} x$                                                                                               | [d] tan <sup>-1</sup> x                       | 14    | _                                      | L-1                           | 1                                        | -2               | <b>51</b> 1       | [6] ł            | 6     | + <sup>2</sup> [/ | a t         |
| -                               | 1-1                                                                                                             | 1 9                                           |       |                                        | 1                             | $(\mathbf{S}^2)$                         | $\sim$           | alt               | [թ] ։            | , [6] | υĮ                | 2           |
| э.                              | $\int \frac{-1}{\sqrt{1-x^2}} dx$                                                                               | 1X = ?                                        | 15    |                                        |                               | 5                                        | s                | 1                 | ~<br>>           |       |                   |             |
|                                 | [a] sin <sup>-1</sup> x                                                                                         | $\begin{bmatrix} h \end{bmatrix} \cos^{-1} x$ |       |                                        |                               | $\mathbf{S}^2$                           | $+\omega^2$      | £_'               | -                |       |                   |             |
|                                 | [c] sec <sup>-1</sup> x                                                                                         |                                               |       |                                        | <b>[a]</b> s                  | in ω                                     | t                | [b                | ] co:            | sωt   |                   |             |
|                                 |                                                                                                                 |                                               |       |                                        | [c] s                         | $\operatorname{in} \frac{\mathrm{t}}{-}$ |                  | ľd                | ] cos            | s - t |                   |             |
| 6.                              | $\int \underbrace{\frac{e^x}{1+e^x}} dx$                                                                        | x = ?                                         |       |                                        |                               | ω                                        | Insw             |                   |                  | ω     |                   |             |
|                                 | [a] $1 + e^x$                                                                                                   | [b] $\ell n \left(1 + e^x\right)$             | 1     | a                                      | 2                             | a                                        | 3                | a                 | 4                | a     | 5                 | b           |
|                                 | arann n (1                                                                                                      | . ,                                           | 6     | b                                      | 7                             | b                                        | 8                | a                 | 9                | с     | 10                | a           |
|                                 | [c] e <sup>x</sup>                                                                                              | $[d] \frac{\left(1+e^x\right)^2}{2}$          | 11    | . <b>b</b>                             | 12                            | a                                        | 13               | a                 | 14               | b     | 15                | b           |
|                                 | [L] e                                                                                                           | [u] <u>2</u>                                  |       | *                                      | * * * :                       | * * *                                    | * * *            | * * *             | ***              | * * * | * *               |             |
|                                 |                                                                                                                 |                                               |       |                                        |                               |                                          |                  |                   |                  |       |                   |             |





## EDUGATE Up to Date Solved Papers 37 Applied Mathematics-II (MATH-233) Paper B

23. Find 
$$\int \frac{1}{25 + x^2} dx$$
  
Sol.  $\int \frac{1}{25 + x^2} dx$   
 $= \int \frac{1}{(5)^2 + (x)^2} dx$   
 $= \left[\frac{1}{5} \tan^{-1}\left(\frac{x}{5}\right) + c\right] \{ \text{Using formula # 17} \} \\ = \left[\frac{1}{5} \tan^{-1}\left(\frac{x}{5}\right) + c\right] \{ \text{Using formula # 17} \} \\ = \frac{1}{5} \tan^{-1}\left(\frac{x}{5}\right) + c \} \{ \text{Using formula # 17} \} \\ = \int \frac{1}{5} \tan^{-1}\left(\frac{x}{5}\right) + c \} \{ \text{Using formula # 17} \} \\ = \int \frac{1}{5} \tan^{-1}\left(\frac{x}{5}\right) + c \} \{ \text{Using formula # 17} \} \\ = \int \frac{1}{5} \tan^{-1}\left(\frac{x}{5}\right) + c \} \{ \text{Using formula # 17} \} \\ = \int \frac{1}{5} \tan^{-1}\left(\frac{x}{5}\right) + c \} \\ = \int \frac{1}{5} (\cos^3 x) dx \\ = \int \frac{1}{5} (\cos^3 x)$ 

### EDUGATE Up to Date Solved Papers 38 Applied Mathematics-II (MATH-233) Paper B

### EDUGATE Up to Date Solved Papers 39 Applied Mathematics-II (MATH-233) Paper B

| 83 <b></b>   |                                                                                                                                                                                           | , supplied in |                                                                                        |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------|--|--|--|
| 19.          | Find the solution of                                                                                                                                                                      |               | $\frac{1}{\cos^2 y} dy = -\frac{1}{\cos^2 x} dx$                                       |  |  |  |
|              | $\frac{dy}{dx} = -\sin x + 3x^2$                                                                                                                                                          |               |                                                                                        |  |  |  |
|              | ux                                                                                                                                                                                        |               | Integrating both sides, we have:                                                       |  |  |  |
| Sol.         | $\frac{\mathrm{d}y}{\mathrm{d}x} = -\sin x + 3x^2$                                                                                                                                        |               | $\int \frac{1}{\cos^2 y} dy = -\int \frac{1}{\cos^2 x} dx$                             |  |  |  |
|              | $dy = \left(-\sin x + 3x^2\right)dx$                                                                                                                                                      |               | $\int \sec^2 y  dy = -\int \sec^2 x  dx$                                               |  |  |  |
|              | Integrating both sides, we have:                                                                                                                                                          |               | $\tan y = -\tan x + c$                                                                 |  |  |  |
|              | $\int 1  dy = \int \left(-\sin x + 3x^2\right) dx$                                                                                                                                        |               | $\tan y + \tan x = c$                                                                  |  |  |  |
|              | $\mathbf{y} = -\left(-\cos \mathbf{x}\right) + 3\left(\frac{\mathbf{x}^3}{3}\right) + \mathbf{c}$                                                                                         | 22.           | Find the value of $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$                         |  |  |  |
| 2010/02/2010 | $y = \cos x + x^{3} + c$ Find the solution of $\frac{dy}{dx} = 1 + x + y + xy$ $\frac{dy}{dx} = 1 + x + y + xy$ $\frac{dy}{dx} = (1 + x) + y(1 + x)$ $\frac{dy}{dx} = (1 + x) + y(1 + x)$ | Sol.          | $dx = y^2$                                                                             |  |  |  |
| 20.          | Find the solution of                                                                                                                                                                      | Ma            | 1 1 1                                                                                  |  |  |  |
|              | $\frac{dy}{dx} = 1 + x + y + xy$                                                                                                                                                          |               | $\frac{1}{\sqrt{1-y^2}} dy = \frac{1}{\sqrt{1-x^2}} dx$                                |  |  |  |
|              | dx                                                                                                                                                                                        |               | Integrating both sides, we have :                                                      |  |  |  |
| Sol.         | $\frac{dy}{dt} = 1 + x + y + xy$                                                                                                                                                          |               | Mal .                                                                                  |  |  |  |
|              | dx<br>dy                                                                                                                                                                                  |               | $\int \frac{1}{\sqrt{1-y^2}} dy = \int \frac{1}{\sqrt{1-x^2}} dx$                      |  |  |  |
|              | $\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}} = (1+\mathbf{x}) + \mathbf{y}(1+\mathbf{x})$                                                                                           |               | $\sqrt{1-y^2}$ $\sqrt{1-x^2}$                                                          |  |  |  |
|              | dy a same                                                                                                                                                                                 |               | $\sin^{-1} y = \sin^{-1} x + c$                                                        |  |  |  |
|              | $\frac{\mathrm{d}y}{\mathrm{d}x} = (1+x)(1+y)$                                                                                                                                            |               | What is the inverse                                                                    |  |  |  |
|              | 1                                                                                                                                                                                         | 23.           |                                                                                        |  |  |  |
|              | $\frac{1}{(1+y)}dy = (1+x)dx$                                                                                                                                                             |               | transformation of $\frac{1}{s+a}$ ?                                                    |  |  |  |
|              | Integrating both sides, we have                                                                                                                                                           | RA.C          |                                                                                        |  |  |  |
|              | Integrating both sides, we have:                                                                                                                                                          | Sol.          | $L^{-1}\left\{\frac{1}{s+a}\right\}$                                                   |  |  |  |
|              | $\int \left(\frac{1}{1+\mathbf{y}}\right) d\mathbf{y} = \int (1+\mathbf{x}) d\mathbf{x}$                                                                                                  |               | (2)                                                                                    |  |  |  |
|              | <b>J</b> (1+ <b>y</b> ) <b>J</b> (1+ <b>y</b> )                                                                                                                                           |               | $=L^{-1}\left\{\frac{1}{s-(-a)}\right\}=\boxed{e^{-at}}$                               |  |  |  |
|              | $\ell n \left(1+y\right) = x + \frac{x^2}{2} + c$                                                                                                                                         | 24.           | What is inverse Laplace                                                                |  |  |  |
|              | 4                                                                                                                                                                                         |               | transformation of the function                                                         |  |  |  |
| 21.          | Find the value of                                                                                                                                                                         |               | 4 .                                                                                    |  |  |  |
|              | $\cos^2 x \frac{dy}{dx} + \cos^2 y = 0$                                                                                                                                                   |               | $\frac{4}{s^2+16}$ ?                                                                   |  |  |  |
|              | ux                                                                                                                                                                                        | Bal           | $L^{-1}\left\{\frac{4}{s^2+16}\right\}$                                                |  |  |  |
| Sol.         | $\cos^2 x  \frac{\mathrm{d}y}{\mathrm{d}x} + \cos^2 y = 0$                                                                                                                                | 301.          |                                                                                        |  |  |  |
|              | $\cos^2 x \frac{dy}{dx} = -\cos^2 y$                                                                                                                                                      | , <u> </u>    | $=L^{-1}\left\{\frac{4}{s^{2}+\left(4\right)^{2}}\right\}=\boxed{\sin\left(4t\right)}$ |  |  |  |
|              |                                                                                                                                                                                           |               |                                                                                        |  |  |  |

#### EDUGATE Up to Date Solved Papers 40 Applied Mathematics-II (MATH-233) Paper B

|                                                                            | booming op to bate bolica i apera                                                            |  |  |  |  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|
| 25.                                                                        | Find $L^{-1}$ $s-a$ $s+a$                                                                    |  |  |  |  |
| Sol.                                                                       | $L^{-1}\left\{\frac{1}{s-a} - \frac{1}{s+a}\right\}$                                         |  |  |  |  |
|                                                                            | $=L^{-1}\left\{\frac{1}{s-a}\right\}-L^{-1}\left\{\frac{1}{s+a}\right\}$                     |  |  |  |  |
|                                                                            | $= e^{at} - e^{-at}$                                                                         |  |  |  |  |
| 26.                                                                        | What is inverse Laplace transform                                                            |  |  |  |  |
|                                                                            | $ ef \frac{2}{s^3}? $                                                                        |  |  |  |  |
| Sol.                                                                       | $L^{-1}\left\{\frac{2}{s^3}\right\} = L^{-1}\left\{\frac{2!}{s^{2+1}}\right\} = \boxed{t^2}$ |  |  |  |  |
| 27.                                                                        | Define Fourier Series?                                                                       |  |  |  |  |
| Sol.                                                                       | A Fourier series decomposes a                                                                |  |  |  |  |
|                                                                            | periodic function into sum of a set of simple oscillating functions, called sines and        |  |  |  |  |
| 1                                                                          | cosines.                                                                                     |  |  |  |  |
|                                                                            | Section - II                                                                                 |  |  |  |  |
| Note                                                                       | <b>:</b> Attemp any three (3) questions $3 \times 8 = 24$                                    |  |  |  |  |
| <b>Q.2.</b> [a                                                             | a] Evaluate: $\int \frac{\mathrm{d}x}{1+\sin x}$                                             |  |  |  |  |
| Sol. S                                                                     | ee Q.5 of Ex# 7.2 (Page # 292)                                                               |  |  |  |  |
| <b>[b]</b> Evaluate: $y_{1}(2, y_{2})$                                     |                                                                                              |  |  |  |  |
|                                                                            | $\int (\sin x + \cos x)^n (\cos^2 x - \sin^2 x)  dx$                                         |  |  |  |  |
| <b>Sol.</b> See $Q.1(xv)$ of $Ex # 7.3 (Page # 301)$                       |                                                                                              |  |  |  |  |
| <b>Q.3.[a]</b> Evaluate $\int \ell n \left( x + \sqrt{x^2 + 1} \right) dx$ |                                                                                              |  |  |  |  |
| Sol. See $Q.3(v)$ of $Ex \#  8.3  \bigl( Page \ \# \ 348 \bigr)$           |                                                                                              |  |  |  |  |
| [b]                                                                        | Evaluate $\int \frac{dx}{\left(a^2 - x^2\right)^{3/2}}$                                      |  |  |  |  |

**Sol.** See Q.1(x) of Ex # 8.2 (Page # 334)

**Q.4.[a]** Calculate 
$$\int_{0}^{\frac{\pi}{3}} \frac{\mathrm{d}x}{1-\sin x}$$

**Sol.** See example # 07 of Chapter 09.

[b] Find the area of the region enclosed by curve y = 3 - x<sup>2</sup> and the line y - -x + 1.

**Sol.** See Q.7 of Ex # 9.2 (Page # 391)

Q.5.[a] Find the general solution of equation: earn M

$$dx + xydy = y^2 dx + ydy$$

**Sol.** See Q.8 of 
$$Ex # 10$$
 (Page  $# 415$ )

Find the particular solution [b] satisfying the given boundary conditions 2xdx - dy = x(xdy - ydx) given y

**Sol.** See Q.16 of Ex # 10 (Page # 419)

**Q.6.** Prove that:  
(i) 
$$L \{e^{at} \cos \omega t\} = \frac{s-a}{(s-a)^2 + \omega^2}$$

**Sol.** See Q.4(1) of Ex # 12 (Page # 467)

(ii) 
$$L\left\{e^{at}\sin\omega t\right\} = \frac{\omega}{\left(s-a\right)^2 + \omega^2}$$