EDUGATE Up to Date Solved Papers 14 Applied Mathematics-II (MATH-233) Paper A

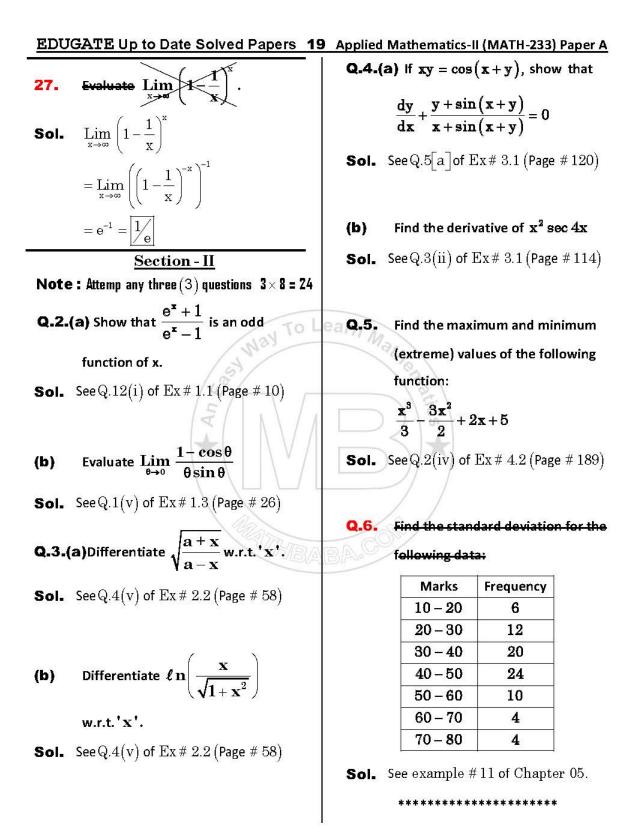
EDO	GATE Up to Date Solved Papers	14 Applie
	DAE / IA - 2017	9.
MATH	5.	
	PAPER 'A' PART - A (OBJECTIVE)	
Time	:30 Minutes Marks:15	
Q.1:	Encircle the correct answer.	
1.	Given $f(x) = \frac{1}{x} - 1$ then $f(2) = ?$	10.
	[a] 1 [b] 2 [c] $-rac{1}{2}$ [d] 3	
2.	Which one is the periodic function:	11.
	[a] $x^2 + 1$ [b] $2x$	
	[c] $\sin x$ [d] $x^3 + 1$	
3.	$\lim_{x \to 2} (cx) = ?$	1
	$\begin{bmatrix} a \\ x \rightarrow 2 \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \begin{bmatrix} c \\ 3 \end{bmatrix} \begin{bmatrix} d \\ 4 \end{bmatrix} \begin{bmatrix} d \\ (-z + 1)^2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	12.
4.	$\frac{dx}{dx}(ax+b) = i$	
	[a] $2(ax+b)$ [b] $2a(ax+b)$ [c] $\frac{(ax+b)^3}{3}$ [d] $2(ax+b)b$	13.
	[c] $\frac{(ax+b)^3}{3}$ [d] $2(ax+b)b$	
5.	Second derivative of ' \mathbf{x}^2 ' is:	
	[a] 2 [b] 2x [c] zero [d] 2x ²	
6.	$\frac{d}{dx}(\cos ec3x) =$	14.
	[a] $-\cos ec3x \cot 3x$	ADA C
	[b] -3 cos ec3x cot 3x	ABAL
	$[c] \cot 3x \qquad [d] \csc 3x$	15.
7.	$\frac{\mathrm{d}}{\mathrm{d}x}(\sin^{-1}x) = ?$	
	[a] $rac{1}{\sqrt{\mathrm{x}^2-1}}$ [b] $rac{-1}{\sqrt{1-\mathrm{x}^2}}$	
	[c] $\frac{\sin^{-1}x}{\sqrt{1-x^2}}$ [d] $\frac{1}{\sqrt{1-x^2}}$	
8.	$\frac{\mathrm{d}}{\mathrm{d}x}(\ell n\sin x)=$	1 6 11
	[a] $\cot x$ [b] $\frac{1}{\sin x} \ell n \sin x$	
	[c] ℓn cosx [d] tan x	3.25

pheu Maulemaucs-ii (MATH-255) Paper A									
9.	$\frac{\mathrm{d}}{\mathrm{d}x}\Big[\ell\mathbf{n}\big(x^2+1\big)\Big]=?$								
	[a] — x	x 2 + 1		[b	$\frac{2}{x^2}$	$\frac{2x}{+1}$		
	[c] ℓ	n(2	x + 1	l) (d] 2x	lℓn	$(2x \cdot$	+1)
10.	F	or a	dec	reas	ing f	unct	ion	$\frac{\mathrm{d} \mathbf{y}}{\mathrm{d} \mathbf{x}}$	is:
		a] +				o] −v		6.61	
		c] Z6			-	-		of th	
11.		A function is maximum at a point if							
	i	ts 2^{i}	^{1d} d	eriva					
		a] +			_	v] –v			
		c] Z6				I] No	ne o	of th	ese
12.	lat	$\frac{d}{dx}($	cos	x)=	?				
		a] s:) – s		5	
	and the second se	P	-a+ 1		_] co			
13.	, F	irstł	nand	info	orma	ition	is c	alled	;
	٦ J	a] Pi	rima	ry da	ata				
_	51	b] S	econ	idary	dat	a			
	21	[c] Raw data							
	_[d] C	onti	nuou	is da	ata			
14.		Mear	n, M	edia	n an	d M	ode	are t	he
/	$\langle t \rangle$	ypes	of:						
C	Q j	a] A	vera	ge	[b) Fu	nctio	on	
Ja	1	c] V	ariat	ole	[d] Co	nsta	int	
15.	1	The s	um	of al	l var	iable	e div	rided	by
	t	heir	nun	ıber	is ca	alled	i.		
		a] M							
		b] A		netic	: Me	an			
[c] Mode									
[d] Geometric Mean									
Answer Key									
1	с	2	с	3	a	4	b	5	a
6	b	7	a	8	a	9	b	10	b
11	b	12	b	13	a	14	a	15	b

EDUGATE Up to Date Solved Papers 15 Applied Mathematics-II (MATH-233) Paper A

DAE / IA - 2017		$= \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x}$
MATH-233 APPLIED MATHEMATICS-II		$\begin{array}{c} - \lim_{x \to 0} x x \to 0 \cos x \end{array}$
PAPER 'B' PART-B(SUBJECTIVE)		$= (1). \frac{1}{\cos 0} = \frac{1}{1} = \boxed{1}$
Time	:2:30Hrs Marks:60	
	Section - I	5. Differentiate $\frac{6}{x} + \frac{4}{x^2} - \frac{3}{x^3}$ w.r.t. 'x'.
Q.1.	Write short answers to any	
	Eighteen (18) questions.	Sol. $\frac{d}{dx} \left(\frac{6}{x} + \frac{4}{x^2} - \frac{3}{x^3} \right)$
1.	if $f(x) = \frac{x^2 - 3}{x + 4}$, find $f(-3)$	un (n x x)
	x^2-3	$=\frac{d}{dx}(6x^{-1}+4x^{-2}-3x^{-3})$
Sol.	$f(x) = \frac{x^2 - 3}{x + 4}$	$= 6(-1)x^{-2} + 4(-2)x^{-3} - 3(-3)x^{-4}$
	Put $x = -3$, we have:	
	$f(-3) = \frac{(-3)^2 - 3}{2 + 4} = \frac{9 - 3}{1} = 6$	$= \left -\frac{6}{x^2} - \frac{8}{x^3} + \frac{9}{x^4} \right $
	-3+4 1	6. Find $\frac{dy}{dx}$ if $x^3 + y^3 + 4 = 0$
2.	Is the following function even, odd	6. Find $\frac{dy}{dx}$ if $x^3 + y^3 + 4 = 0$
	or neither: $f(x) = 4x^3 - 2x + 6$	Sol. Differentiate both sides w.r.t. 'x':
Sol.	As, $f(x) = 4x^3 - 2x + 6$	$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left(\mathbf{x}^3 + \mathbf{y}^3 + 4 \right) = \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left(0 \right)$
	Replace x by $-x$, we have :	
	$f(-x) = 4(-x)^{3} - 2(-x) + 6$	$3x^2 + 3y^2 \frac{dy}{dx} + 0 = 0$
	$f(-x) = -4x^3 + 2x + 6$	dy dx
	$f(-x) = -(4x^3 - 2x - 6)$	$3y^2\frac{dy}{dx} = -3x^2$
	$f(-x) \neq -f(x)$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3x^2}{3y^2} \Rightarrow \boxed{\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x^2}{y^2}}$
	Hence $f(x)$ is neither	$\frac{1}{\mathrm{dx}} = \frac{1}{\mathrm{3y}^2} \Rightarrow \frac{1}{\mathrm{dx}} = \frac{1}{\mathrm{y}^2}$
	even nor odd function.	
3.	Evaluate: $\lim_{x \to 3} \sqrt{25 - x^2}$	7. Find $\frac{dy}{dx}$ if $x = \theta^2 - \theta - 1$, $y = 2\theta^2 + \theta + 1$
Sol.	$\lim \sqrt{25-x^2}$	Sol. Differentiate both sides w.r.t. ' θ ':
	x →3	$\frac{\mathrm{d}}{\mathrm{d}\theta}(\mathrm{x}) = \frac{\mathrm{d}}{\mathrm{d}\theta}(\theta^2 - \theta - 1) \left \frac{\mathrm{d}}{\mathrm{d}\theta}(\mathrm{y}) = \frac{\mathrm{d}}{\mathrm{d}\theta}(2\theta^2 + \theta + 1) \right $
	$=\sqrt{25-(3)^2}=\sqrt{25-9}=\sqrt{16}=4$	
4.	$= \sqrt{25 - (3)^{2}} = \sqrt{25 - 9} = \sqrt{16} = \boxed{4}$ Evaluate: Lim tan x $x = \sqrt{25 - (3)^{2}} = \sqrt{25 - 9} = \sqrt{16} = \boxed{4}$	$\frac{\mathrm{dx}}{\mathrm{d\theta}} = 2\theta - 1 - 0 \qquad \qquad \frac{\mathrm{dy}}{\mathrm{d\theta}} = 2(2\theta) + 1 + 0$
	sol X	$\frac{\mathrm{d}\theta}{\mathrm{d}x} = \frac{1}{2\theta - 1} \qquad \qquad \frac{\mathrm{d}y}{\mathrm{d}\theta} = 4\theta + 1$
Sol.	$\lim_{x \to 0} \frac{\tan x}{x} \left(\frac{0}{0}\right) \text{form}$	using chain rule: $\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$
	$= \lim_{x \to 0} \frac{\sin x}{x \cdot \cos x} \left\{ \because \tan x = \frac{\sin x}{\cos x} \right\}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(4\theta + 1\right) \left(\frac{1}{2\theta - 1}\right) = \boxed{\frac{4\theta + 1}{2\theta - 1}}$
		Construction of the state of th

EDUGATE Up to Date Solved Papers 16 Applied Mathematics-II (MATH-233) Paper A


EDUGATE Up to Date Solved Papers 17 Applied Mathematics-II (MATH-233) Paper A

15. Differentiate
$$\overline{\sin x} \overline{x} \overline{x} \overline{x} \overline{x} \tan x$$

Differentiate both equations
both sides w.r.t. 'x':

$$\frac{d}{dx}(y) = \frac{d}{dx}(\sin x) \begin{vmatrix} \frac{d}{dx}(t) = \frac{d}{dx}(\tan x) \\ \frac{d}{dx} = \sec^2 x \\ \frac{dx}{dx} = \csc^2 x \\ \frac{dx}{dx} = \frac{1}{\sec^2 x} \\ \frac{dy}{dx} = \cos x \end{vmatrix} \begin{vmatrix} \frac{dy}{dx} = \frac{1}{\sec^2 x} \\ \frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{dx}{dt} = (\cos x) \left(\frac{1}{\sec^2 x}\right) \\ \frac{dy}{dt} = (\cos x)(\cos^2 x) \Rightarrow \begin{vmatrix} \frac{dy}{dt} = \cos^2 x \\ \frac{dy}{dt} = \cos^2 x \end{vmatrix}$$
18. Find the extreme values of the function $x^2 - 4x - 6$
Sol. Let, $y = x^2 - 4x - 6$ (i)
Differentiate both sides w.r.t. 'x':
 $\frac{d}{dx}(y) = \frac{d}{dx}(x^2 - 4x - 6)$
 $\frac{dy}{dx} = 2x - 4$ (iii)
By using Chain's Rule:
 $\frac{dy}{dx} = (\cos x)(\cos^2 x) \Rightarrow \begin{vmatrix} \frac{dy}{dt} = \cos^2 x \\ \frac{dy}{dt} = \cos^2 x \end{vmatrix}$
By using Chain's Rule:
 $\frac{dy}{dt} = (\cos x)(\cos^2 x) \Rightarrow \begin{vmatrix} \frac{dy}{dt} = \cos^2 x \\ \frac{dy}{dt} = \cos^2 x \end{vmatrix}$
By using Chain's Rule:
 $\frac{dy}{dt} = (\cos x)(\cos^2 x) \Rightarrow \begin{vmatrix} \frac{dy}{dt} = \cos^2 x \\ \frac{dy}{dt} = \cos^2 x \end{vmatrix}$
By using Chain's Rule:
 $\frac{dy}{dt} = (\cos x)(\cos^2 x) \Rightarrow \begin{vmatrix} \frac{dy}{dt} = \cos^2 x \\ \frac{dy}{dt} = \cos^2 x \end{vmatrix}$
By using Chain's Rule:
 $\frac{dy}{dt} = (\cos x)(\cos^2 x) \Rightarrow \begin{vmatrix} \frac{dy}{dt} = \cos^2 x \\ \frac{dy}{dt} = \cos^2 x \end{vmatrix}$
By using Chain's Rule:
 $\frac{dy}{dt} = (\cos x)(\cos^2 x) \Rightarrow \begin{vmatrix} \frac{dy}{dt} = \cos^2 x \\ \frac{dy}{dt} = \cos^2 x \end{vmatrix}$
By using Chain's Rule:
 $\frac{dy}{dt} = (\cos x)(\cos^2 x) \Rightarrow \begin{vmatrix} \frac{dy}{dt} = \cos^2 x \\ \frac{dy}{dt} = \cos^2 x \end{vmatrix}$
By using Chain's Rule:
 $\frac{dy}{dt} = (\cos x)(\cos^2 x) \Rightarrow \begin{vmatrix} \frac{dy}{dt} = \cos^2 x \\ \frac{dy}{dt} = \cos^2 x \end{vmatrix}$
By using Chain's Afw with translow into the translow into translow into the function the functi

EDUGATE Up to Date Solved Papers 18 Applied Mathematics-II (MATH-233) Paper A

<u>.</u>			Mathematics-II (MATH-255) Paper A
19.	Find the mean of the following	24.	Differentiate ℓn√x w.r.t. 'x'.
Sol.	scores 4, 0, 2, 9, 0. Mean = $\frac{\sum x}{n} = \frac{4+0+2+9+0}{5} = \frac{15}{3} = \boxed{3}$	Sol.	$\frac{\mathrm{d}}{\mathrm{d}\mathrm{x}} \left(\ell \mathrm{n}\sqrt{\mathrm{x}}\right)$
0011	n 5 3		$=\frac{1}{\sqrt{\mathbf{x}}}\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}(\sqrt{\mathbf{x}})$
20.	Find standard deviation of the		$-\frac{1}{\sqrt{\mathbf{x}}} d\mathbf{x} (\mathbf{v}^{\mathbf{x}})$
	$\frac{1}{2}$ values: 2, 4, 6, 8, 10.		$=\frac{1}{\sqrt{x}}\cdot\frac{1}{2}(x)^{\frac{1}{2}-1}\frac{d}{dx}(x)$
	x \mathbf{x}^2 $\nabla \mathbf{x}^2 (\Sigma \mathbf{x})^2$		$=\frac{1}{\sqrt{x}}\cdot\frac{1}{2}(x)^{2}$ $\frac{1}{dx}(x)$
	$\frac{\mathbf{x} \qquad \mathbf{x}^{*}}{2} \qquad \mathbf{S.D.} = \sqrt{\frac{\Sigma x^{2}}{n}} - \left(\frac{\Sigma x}{n}\right)^{2}$		$1 1_{(-)} \frac{1}{2} (1)$
Sol.	$4 16 (220) (30)^2$		$=\frac{1}{\sqrt{x}}\cdot\frac{1}{2}(x)^{-\frac{1}{2}}(1)$
2	$\frac{1}{6} \frac{13}{36} \sigma = \sqrt{\left(\frac{220}{5}\right) - \left(\frac{30}{5}\right)^2}$		
5	$\frac{8}{10} \frac{64}{100} \qquad $		$=\frac{1}{\sqrt{x}}\cdot\frac{1}{2\sqrt{x}}=\frac{1}{2(\sqrt{x})^2}=\left \frac{1}{2x}\right $
). -	Σx = 30 Σx² = 220 $σ = \sqrt{8} = 2.83$		$\mathbf{v}_{\mathbf{x}} = 2\mathbf{v}_{\mathbf{x}} = 2(\mathbf{v}_{\mathbf{x}})$
		25.	The velocity V m/S of a point
21.	Define median.	Carn M	moving in a straight line is given
Sol.	The value which divides an arrange		after t second by $V = 3t^2 + 4t$ find
	data into two equal parts is called Median.		the acceleration after 2 second.
22.		Sol.	As, $v = 3t^2 + 4t$
22.	If $f(x) = a^x$, show that		$a = \frac{dv}{dt} = \frac{d}{dt} (3t^2 + 4t)$
	$f(-p) = \frac{1}{f(p)}$		dt dt dt
	· · · · · · · · · · · · · · · · · · ·		a = 3(2t) + 4(1)
	L.H.S. = $f(-p) = a^{-p}$		a = 6t + 4
Sol.	$=\frac{1}{a^{p}}=\frac{1}{f(p)}=R.H.S.$ Proved.		Acceleration after 2 seconds:
	$-\frac{1}{a^{p}} - \frac{1}{f(p)} = 10.11.5$. Frome.	1	a = 6(2) + 4
-		DAG	a = 12 + 4
23.	Find $\frac{dy}{dx} \neq x \sin^{-1} x$	DIFUS	
Sol.	$y = x \sin^{-1} x$		$a = 16 \text{ m/s}^2$
	erentiate both sides w.r.t. 'x':	26.	E : d dy :e ³ + ² + 9 + 9
d /	$d_{(-1)} = d_{(-1)} - 1 - 1$	20.	Find $\frac{dy}{dx}$ if $y = x^3 + x^2 + 2x + 3$
$\frac{1}{dx}$	$\left[\mathbf{y}\right] = \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left(\mathbf{x}\sin^{-1}\mathbf{x}\right)$	Sol.	Differentiate both sides w.r.t. 'x' :
$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}}$	$=\left(\frac{\mathrm{d}}{\mathrm{d}\mathrm{x}}(\mathrm{x})\right)\mathrm{sin}^{-1}\mathrm{x}+\mathrm{x}\left(\frac{\mathrm{d}}{\mathrm{d}\mathrm{x}}(\mathrm{sin}^{-1}\mathrm{x})\right)$		$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}(\mathbf{y}) = \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left(\mathbf{x}^3 + \mathbf{x}^2 + 2\mathbf{x} + 3\right)$
			dy s
$\frac{\mathrm{dy}}{\mathrm{dx}} = (1) \sin^{-1} x + x \left(\frac{1}{\sqrt{1-x^2}} \right)$			$\frac{dy}{dx} = 3x^2 + 2x + 2(1) + 0$
100	···· ›		dy
$\frac{\mathrm{d} \mathbf{y}}{\mathrm{d} \mathbf{x}}$	$=\sin^{-1}x+\frac{x}{\sqrt{1-x^2}}$	<u></u>	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2x + 2$
2			

