EDUGATE Up to Date Solved Papers 17 Applied Mathematics-II (MATH-212)

DAE/IA-2017

MATH-212 APPLIED MATHEMATICS-II PART - A (OBJECTIVE)

Time:30 Minutes Marks: 20 Q.1: Encircle the correct answer.

- If $f(x) = 3^x 1$, then f(3) = ?1.
 - [a] 27
- [b] 8
- [c] 26
- [**d]** 16
- $\lim_{x\to 2} (cx) = ?$ 2.
 - [a] 2c
- [c] e
- [c] 3
- [d] 4
- $\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}(\mathbf{a}\mathbf{x}+\mathbf{b})^2=?$ 3.
 - [a] 2(ax+b) [b] 2a(ax+b)
 - [c] $\frac{(ax+b)^8}{2}$ [d] 2(ax+b)b
- $\frac{\mathrm{d}}{\mathrm{d}x}\sqrt{1+x} = \left| \frac{\mathrm{d}}{\mathrm{d}x} \right|$

 - $\begin{bmatrix} a \end{bmatrix} \frac{1}{\sqrt{1+x}} \qquad \begin{bmatrix} b \end{bmatrix} \frac{1}{2\sqrt{1+x}}$
 - [c] $(1+x)^{\frac{1}{3}}$ [d] $\frac{-1}{2\sqrt{1+x}}$
- $\frac{d}{dx}(\cos e c 3x) =$ 5.
 - [a] -cosec3xcot3x
 - $[b] -3\cos ec3x\cot 3x$

 - [c] $\cot 3x$ [d] $\cos ec 3x$
- $\frac{d}{dx}(\sin^{-1}\sqrt{x}) = ?$
 - [a] $\frac{1}{\sqrt{1-v^2}}$ [b] $\frac{1}{\sqrt{1+v^2}}$
 - [c] $\frac{1}{2\sqrt{y}\sqrt{1-y}}$ [d] $\frac{1}{2\sqrt{y}(1-y)}$
- 7. $\frac{\mathrm{d}}{\mathrm{d}x}(e^{3x}) = ?$
 - [a] e^{3x-1}
- [b] e^{x-1}

- [cl 3e^{3x}
- [d] $3xe^{3x}$
- $\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}(\ell \mathbf{n} \sin \mathbf{x}) =$

 - [a] cotx [b] $\frac{1}{\sin x} \ln \sin x$
 - [c] $\ell n \cos x$ [d] $\tan x$
- For a decreasing function $\frac{dy}{dz}$ is: 9.
 - [a] +ve
- [b] -ve
- [c] zero
- [d] None of these
- $\int (\sqrt{x}) dx =$ 10.
- [a] $\frac{1}{2}x^{\frac{1}{2}}$ [b] $\frac{2x^{\frac{1}{2}}}{3}$

 - [c] $\frac{2}{3}x^{\frac{3}{2}}$ [d] $\frac{1}{2x^{\frac{1}{2}}}$
 - 11. $\int (\sec x) dx = ?$

 - [a] $\tan x$ [b] $\frac{\sec^2 x}{2}$
 - [c] $\ell n(\sec x + \tan x)$
 - [d] secxtanx
 - 12. $\int (e^{2x}) dx = ?$
 - [a] $\frac{e^{2x}}{2}$ [b] $\frac{e^{x^2}}{2}$

 - [c] $2e^{2x}$ [d] $\frac{e^{2x+1}}{2}$
 - $\int (\cos x) dx = ?$

 - [a] $\cos x$ [b] $\sin x$
 - [c] $\frac{\cos^2 x}{2}$ [d] $-\sin x$
 - 14. $\int_0^{\pi/4} (\sec^2 x) dx = ?$
- [b] 2
- [c] 0
- [d] 3

EDUGATE Up to Date Solved Papers 18 Applied Mathematics-II (MATH-212)

- 15. When two lines are perpendicular:
 - [a] $m_1 = m_9$
- [b] $m_1 m_2 = -1$
- [c] $m_1 = -m_9$ [d] $m_1 m_9 = 1$
- Equation of line in slope intercept 16. form is:

 - [a] $\frac{x}{a} + \frac{y}{b} = 1$ [b] y = mx + c
 - [c] $y y_1 = m(x x_1)$
 - [d] $y + y_1 = m(x + x_1)$
- 17. Give three points are collinear if their slopes are:
 - [a] Equal
- [b] Unequal

TOL

- [c] $m_1 m_2 = -1$ [d] $m_1 m_2 = 1$
- $y-y_1 = m(x-x_1)$ is the: 18.
 - [a] Slope intercept form
 - [b] Intercepts form
 - [c] Point Slope form
 - [d] Two Points form
- 19. Center of the circle

$$(x-1)^2 + (y-2)^2 = 16$$
 is:

- [a] (1, 2) [b] (2, 1)
- [c](4,0)
- [d] (-1,-2)
- 20. For a point circle, the radius will be:
 - [a] 1
- [b] -1
- [c] 0
- [d] Infinity

Answer Key

1	c	2	a	3	b	4	b	5	b
6	d	7	c	8	а	9	b	10	b
11	c	12	a	13	b	14	a	15	b
16	b	17	a	18	c	19	a	20	c

DAE/IA - 2017

MATH - 212 APPLIED MATHEMATICS - II

PART - B (SUBJECTIVE)

Time:2:30Hrs

Marks: 60

Section - I

Q.1: Write short answers to any Twenty Five (25)

of the follwing questions.

 $25 \times 2 = 50$

- if $f(x) = 3x^2 5x + 7$, find f(4)1.
- **Sol.** $f(x) = 3x^2 5x + 7$

Put x = 4, we have:

$$f(4) = 3(4)^2 - 5(4) + 7$$

$$f(4) = 48 - 20 + 7 = 35$$

- Is the following function even, odd or neither: $f(x) = 4x^3 - 2x + 6$
- As, $f(x) = 4x^3 2x + 6$ Sol.

Replace x by -x, we have:

$$f(-x) = 4(-x)^3 - 2(-x) + 6$$

$$f(-x) = -4x^3 + 2x + 6$$

$$f(-x) = -(4x^3 - 2x - 6)$$

$$f(-x) \neq -f(x)$$

Hence f(x) is **neither**

even nor odd function.

- Evaluate $\lim_{x \to 1} \frac{x^2 1}{x^2 1}$ 3.
- $\lim_{x\to 1} \frac{x^2-1}{x-1} \left(\frac{0}{0}\right)$ form Sol. $= \lim_{x \to 1} \frac{(x)^2 - (1)^2}{x - 1}$
 - $= \lim_{x \to 1} \frac{(x-1)(x+1)}{(x-1)}$
 - $= \underset{x \to 1}{\text{Lim}} (x+1) = 1 + 1 = \boxed{2}$
- Evaluate $\lim_{\theta \to 0} \frac{1 \cos \theta}{\theta \sin \theta}$ 4.

EDUGATE Up to Date Solved Papers 19 Applied Mathematics-II (MATH-212)

Sol.
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta \sin \theta} \left(\frac{0}{0} \right) \text{ form}$$

$$= \lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta \sin \theta} \times \frac{1 + \cos \theta}{1 + \cos \theta}$$

$$= \lim_{\theta \to 0} \frac{\left(1\right)^2 - \left(\cos \theta\right)^2}{\theta \sin \theta \left(1 + \cos \theta\right)}$$

$$= \lim_{\theta \to 0} \frac{1 - \cos^2 \theta}{\theta \sin \theta \left(1 + \cos \theta\right)}$$

$$= \lim_{\theta \to 0} \frac{\sin^2 \theta}{\theta \sin \theta \left(1 + \cos \theta\right)}$$

$$= \lim_{\theta \to 0} \frac{\sin \theta}{\theta (1 + \cos \theta)}$$

$$= \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \cdot \lim_{\theta \to 0} \frac{1}{(1 + \cos \theta)}$$

$$=(1).\frac{1}{1+\cos 0}=\frac{1}{1+1}=\boxed{\frac{1}{2}}$$

5. Differentiate
$$\frac{1}{5}x^{\frac{5}{2}} + \frac{1}{3}x^{\frac{3}{2}}$$
 w.r.t.

Sol.
$$\frac{d}{dx} \left(\frac{1}{5} x^{\frac{5}{2}} + \frac{1}{3} x^{\frac{3}{2}} \right)$$
$$= \frac{1}{5} \left(\frac{5}{2} x^{\frac{3}{2}} \right) + \frac{1}{3} \left(\frac{3}{2} x^{\frac{1}{2}} \right)$$
$$= \left| \frac{1}{2} x^{\frac{3}{2}} + \frac{1}{2} x^{\frac{1}{2}} \right|$$

6. Differentiate
$$\sqrt{x^2 + 1}$$
 w.r.t. 'x'.

Sol.
$$\frac{d}{dx} \left(\sqrt{x^2 + 1} \right)$$

$$= \frac{1}{2} \left(x^2 + 1 \right)^{\frac{1}{2} - 1} \left(\frac{d}{dx} \left(x^2 + 1 \right) \right)$$

$$= \frac{1}{2} \left(x^2 + 1 \right)^{-\frac{1}{2}} \left(2x + 0 \right)$$

$$= \frac{1}{2\sqrt{x^2 + 1}} \left(2x \right) = \boxed{\frac{x}{\sqrt{x^2 + 1}}}$$

7. Differentiate sin(tanx) w.r.t. 'x'.

Sol.
$$\frac{d}{dx} \left[\sin(\tan x) \right]$$
$$= \cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right)$$
$$= \left[\cos(\tan x) \sec^2 x \right]$$

8. Find
$$\frac{dy}{dx}$$
 if $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$

$$\frac{d}{dx} \left(x^{\frac{2}{3}} + y^{\frac{2}{3}} \right) = \frac{d}{dx} \left(a^{\frac{2}{3}} \right)$$

$$\frac{2}{3} x^{-\frac{1}{3}} + \frac{2}{3} y^{-\frac{1}{3}} \frac{dy}{dx} = 0$$

$$\frac{2}{3} y^{-\frac{1}{3}} \frac{dy}{dx} = -\frac{2}{3} x^{-\frac{1}{3}}$$

$$\frac{d\mathbf{y}}{d\mathbf{x}} = \left(-\frac{2}{3}\mathbf{x}^{-\frac{1}{3}}\right) \cdot \left(\frac{3}{2\mathbf{y}^{-\frac{1}{3}}}\right)$$

$$\frac{d\mathbf{y}}{d\mathbf{x}} = -\frac{\mathbf{x}^{-\frac{1}{3}}}{\mathbf{y}^{-\frac{1}{3}}} \implies \frac{d\mathbf{y}}{d\mathbf{x}} = -\frac{\mathbf{y}^{\frac{1}{3}}}{\mathbf{y}^{\frac{1}{3}}}$$

9. Differentiate
$$2x^2 + x + 1$$
 w.r.t. $x^2 - x - 1$

Sol. Let,
$$y = 2x^2 + x + 1$$
 & $t = x^2 - x - 1$
Differentiate both sides w.r.t. 'x':

$$\frac{\frac{d}{dx}(y) = \frac{d}{dx}(2x^2 + x + 1)}{\frac{d}{dx}(t) = \frac{d}{dx}(x^2 - x - 1)}$$

$$\frac{\frac{dy}{dx} = 2(2x) + 1 + 0}{\frac{dy}{dx}} = 4x + 1$$

$$\frac{\frac{dt}{dx}}{\frac{dt}{dx}} = 2x - 1 - 0$$

$$\frac{\frac{dt}{dx}}{\frac{dt}{dx}} = 2x - 1$$

$$\frac{\frac{dt}{dx}}{\frac{dt}{dt}} = \frac{1}{2x - 1}$$

using chain rule :
$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$

$$\frac{\mathrm{dy}}{\mathrm{dt}} = \left(4x+1\right)\left(\frac{1}{2x-1}\right) = \boxed{\frac{4x+1}{2x-1}}$$

EDUGATE Up to Date Solved Papers 20 Applied Mathematics-II (MATH-212)

10. Differentiate $\tan^{-1} \sqrt{x}$ w.r.t. 'x'.

Sol.
$$\frac{d}{dx} \left(\tan^{-1} \sqrt{x} \right)$$

$$= \frac{1}{1 + (\sqrt{x})^2} \cdot \frac{d}{dx} \left(\sqrt{x} \right)$$

$$= \frac{1}{1 + x} \cdot \frac{1}{2} \left(x^{-\frac{1}{2}} \right)$$

$$= \frac{1}{2\sqrt{x} (1 + x)}$$

11. Differentiate $x \ln x - x$ w.r.t. 'x'.

Sol.
$$\frac{d}{dx}(x\ell nx - x)$$

$$= \left[\left(\frac{d}{dx}(x) \right) \ell nx + x \left(\frac{d}{dx}(\ell nx) \right) \right] - \frac{d}{dx}(x)$$

$$= (1)\ell nx + x \left(\frac{1}{x} \right) - 1$$

$$= \ell nx + \cancel{1} - \cancel{1} = \boxed{\ell nx}$$

12. Differentiate $e^{\sin 2x}$ w.r.t. 'x'.

Sol. Let
$$y = e^{\sin 2x}$$

Differentiate both sides w.r.t. 'x':

 $\frac{d}{dx}(y) = \frac{d}{dx}(e^{\sin 2x})$
 $\frac{dy}{dx} = e^{\sin 2x}(\frac{d}{dx}(\sin 2x))$
 $\frac{dy}{dx} = e^{\sin 2x}(\cos 2x)(\frac{d}{dx}(2x))$
 $\frac{dy}{dx} = e^{\sin 2x}\cos 2x(2)$
 $\frac{dy}{dx} = 2e^{\sin 2x}\cos 2x$

13. Differentiate sinx w.r.t. tanx

Sol. Let, y = sinx & t = tanxDifferentiate both equations both sides w.r.t. 'x':

$$\frac{d}{dx}(y) = \frac{d}{dx}(\sin x) \begin{vmatrix} \frac{d}{dx}(t) = \frac{d}{dx}(\tan x) \\ \frac{dy}{dx} = \cos x \end{vmatrix}$$

$$\frac{dx}{dt} = \sec^2 x$$

$$\frac{dx}{dt} = \frac{1}{\sec^2 x}$$

By using Chain's Rule: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$

$$\frac{dy}{dt} = \left(\cos x\right) \left(\frac{1}{\sec^2 x}\right)$$

$$\frac{dy}{dt} = \left(\cos x\right) \left(\cos^2 x\right) \Rightarrow \boxed{\frac{dy}{dt} = \cos^3 x}$$

14. If $x = \sin 2t$, $y = 2\cos t$, then find $\frac{dy}{dx}$.

Sol. As, $x = \sin 2t \& y = 2\cos t$ Differentiate both equations both sides w.r.t. 't':

$$\frac{d}{dt}(t) = \frac{d}{dt}(\sin 2t)$$

$$\frac{d}{dt} = \cos 2t \frac{d}{dt}(2t)$$

$$\frac{dt}{dx} = \cos 2t (2)$$

$$\frac{dx}{dt} = \frac{1}{2\cos 2t}$$

$$\frac{dy}{dt} = -2\sin t$$

By using Chain's Rule: $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ $\frac{dy}{dx} = (-2\sin t)\left(\frac{1}{2\cos 2t}\right) = \boxed{-\frac{\sin t}{\cos 2t}}$

15. Find the derivative w.r.t. 'x' of $x\sqrt{x+1}$

Sol.
$$\frac{d}{dx} \left(x \sqrt{x+1} \right) \left\{ \text{using Product Rule} \right\}$$

$$= \left(\frac{d}{dx} \left(x \right) \right) \sqrt{x+1} + x \left(\frac{d}{dx} \left(\sqrt{x+1} \right) \right)$$

EDUGATE Up to Date Solved Papers 21 Applied Mathematics-II (MATH-212)

$$= 1.\sqrt{x+1} + x.\frac{1}{2}(x+1)^{-\frac{1}{2}} \left(\frac{d}{dx}(x+1)\right)$$

$$= \sqrt{x+1} + \frac{x}{2\sqrt{x+1}}(1+0)$$

$$= \sqrt{x+1} + \frac{x}{2\sqrt{x+1}} = \frac{2(\sqrt{x+1})^2 + x}{2\sqrt{x+1}}$$

$$= \frac{2(x+1) + x}{2\sqrt{x+1}} = \frac{2x+2+x}{2\sqrt{x+1}} = \boxed{\frac{3x+2}{2\sqrt{x+1}}}$$

16. Find the critical values (turning points) for x of the function $x^2 - 4x - 1$

Sol. Let
$$y = x^2 - 4x - 1$$

Differentiate both sides w.r.t. 'x':

$$\frac{d}{dx}(y) = \frac{d}{dx}(x^2 - 4x - 1)$$

$$\frac{dy}{dx} = 2x - 4(1) - 0$$

$$\frac{dy}{dx} = 2x - 4$$

For critical values, put $\frac{dy}{dx} = 0$

$$2x - 4 = 0$$

$$2x = 4 \Rightarrow x = \frac{4}{2} \Rightarrow \boxed{x = 2}$$

17. Evaluate $\int \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx$

Sol.
$$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx$$

$$= \int \left(x^{\frac{1}{2}} + x^{-\frac{1}{2}} \right) dx$$

$$= \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + c$$

$$= \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c = \boxed{\frac{2}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + c}$$

18. Evaluate
$$\int \frac{1}{2} \left(e^{\frac{1}{2}x} - e^{-\frac{1}{2}x} \right) dx$$

Sol.
$$\int \frac{1}{2} \left(e^{\frac{1}{2}x} - e^{-\frac{1}{2}x} \right) dx$$
$$= \frac{1}{2} \left[\frac{e^{\frac{1}{2}x}}{\frac{1}{2}} - \frac{e^{-\frac{1}{2}x}}{-\frac{1}{2}} \right] + c = \left[\frac{e^{\frac{1}{2}x}}{e^{\frac{1}{2}x}} + e^{-\frac{1}{2}x} + c \right]$$

19. Find $\int (\cot^2 x) dx$

Sol.
$$\int (\cot^2 x) dx$$
$$= \int (\cos ec^2 x - 1) dx$$
$$= -\cot x - x + c = \boxed{-\cot x - x + c}$$

20. Find
$$\int \left(\frac{x^2+1}{x+1}\right) dx$$

Sol.
$$\int \left(\frac{x^2 + 1}{x + 1}\right) dx$$
$$= \int \left(x - 1 + \frac{2}{x + 1}\right) dx \frac{x - 1}{x + 1}$$
$$+ x^2 + x$$

$$= \int \left(x - 1 + \frac{2}{x+1} \right) dx \left| x + 1 \right| x^{2} + 1$$

$$= \frac{\pm x^{2} \pm x}{-x+1}$$

$$= \frac{\pm x^{2} \pm x}{2}$$

$$= \frac{x^2}{2} - x + 2 \ln(x+1) + c$$

21. Evaluate $\int (\sqrt{\sin x} \cos x) dx$

Sol.
$$\int \left(\sqrt{\sin x} \cos x\right) dx$$
$$= \int \left(\sin x\right)^{\frac{1}{2}} \cos x dx$$
$$= \frac{\left(\sin x\right)^{\frac{3}{2}}}{\frac{3}{2}} + c = \boxed{\frac{2}{3} \left(\sin x\right)^{\frac{3}{2}} + c}$$

22. Evaluate
$$\int \frac{dx}{(1+x^2)\tan^{-1}x}$$

EDUGATE Up to Date Solved Papers 22 Applied Mathematics-II (MATH-212)

Sol.
$$\int \frac{dx}{\left(1+x^2\right) tan^{-1} x}$$
$$= \int \frac{1}{tan^{-1} x} \cdot \frac{1}{\left(1+x^2\right)} dx$$
$$= \boxed{\ln\left(tan^{-1} x\right) + c}$$

23. Evaluate
$$\int \left(\frac{\ell nx}{x}\right) dx$$

Sol.
$$\int \left(\frac{\ell nx}{x}\right) dx$$

$$= \int \ell nx \cdot \left(\frac{1}{x}\right) dx = \boxed{\frac{1}{2} \left(\ell nx\right)^2 + c}$$

24. Evaluate
$$\int (x \cos 3x) dx$$

Sol.
$$\int (x\cos 3x) dx$$

Integrating by parts:

taking
$$u = x & v = \cos 3x$$

$$= x \int \cos 3x dx - \int \left[\frac{d}{dx}(x) \int \cos 3x dx \right] dx$$

$$= x \left(\frac{\sin 3x}{3} \right) - \int 1 \cdot \left(\frac{\sin 3x}{3} \right) dx$$

$$= \frac{x}{3} \sin 3x - \frac{1}{3} \int \sin 3x dx$$

$$= \frac{x}{3}\sin 3x - \frac{1}{3}\left(-\frac{\cos 3x}{3}\right) + c$$
$$= \left[\frac{x}{3}\sin 3x + \frac{1}{3}\cos 3x + c\right]$$

25. Evaluate
$$\int_1^8 \frac{dx}{\sqrt[3]{x}}$$

Sol.
$$\int_{1}^{8} \frac{dx}{\sqrt[3]{x}} = \int_{1}^{8} x^{-\frac{1}{3}} dx$$
$$= \left[\frac{x^{\frac{2}{3}}}{\frac{2}{3}} \right]_{1}^{8} = \frac{3}{2} \left[x^{\frac{2}{3}} \right]_{1}^{8}$$
$$= \frac{3}{2} \left[(8)^{\frac{2}{3}} - (1)^{\frac{2}{3}} \right]$$

$$= \frac{3}{2} \left[\left(2^{3} \right)^{\frac{2}{3}} - \left(1 \right)^{\frac{2}{3}} \right]$$
$$= \frac{3}{2} \left(4 - 1 \right) = \frac{3}{2} \left(3 \right) = \boxed{\frac{9}{2}}$$

26. Evaluate
$$\int_0^{\pi/6} (\sec^2 x) dx$$

Sol.
$$\int_0^{\pi/6} \left(\sec^2 x \right) dx$$
$$= \left[\tan x \right]_0^{\pi/6} = \tan \left(\frac{\pi}{6} \right) - \tan (0)$$
$$= \tan (30^\circ) - \tan (0^\circ)$$
$$= \frac{1}{\sqrt{3}} - 0 = \boxed{\frac{1}{\sqrt{3}}}$$

27. Evaluate
$$\int \left(\frac{x^3+1}{x^5}\right) dx$$

Sol.
$$\int \left(\frac{x^3 + 1}{x^5}\right) dx$$

$$= \int x^{-5} \left(x^3 + 1\right) dx$$

$$= \int \left(x^{-2} + x^{-5}\right) dx$$

$$= \frac{x^{-2+1}}{-2+1} + \frac{x^{-5+1}}{-5+1} + c$$

$$= \frac{x^{-1}}{-1} + \frac{x^{-4}}{-4} + c = \boxed{-\frac{1}{x} - \frac{1}{4x^4} + c}$$

28. Find the distance between
$$(-4, 2)$$
 & $(0, 5)$.

Sol.
$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$D = \sqrt{(-4 - 0)^2 + (2 - 5)^2}$$

$$D = \sqrt{(-4)^2 + (-3)^2}$$

$$D = \sqrt{16 + 9} = \sqrt{25} = \boxed{5}$$

EDUGATE Up to Date Solved Papers 23 Applied Mathematics-II (MATH-212)

Sol.
$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 6 & 1 \\ -8 & 1 & 1 \\ -2 & 4 & 1 \end{vmatrix}$$
$$= 2\begin{vmatrix} 1 & 1 \\ 4 & 1 \end{vmatrix} - 6\begin{vmatrix} -8 & 1 \\ -2 & 1 \end{vmatrix} + 1\begin{vmatrix} -8 & 1 \\ -2 & 4 \end{vmatrix}$$
$$= 2(1 - 4) - 6(-8 + 2) + 1(-32 + 2)$$
$$= 2(-3) - 6(-6) + 1(-30)$$
$$= -6 + 36 - 30 = \boxed{0}$$

Hence given points are collinear.

Proved.

30. Find the equation of a line through the point (3, -2) with slope

$$m = \frac{3}{4}$$
.

Sol. Equation of line in point - slope form :

$$y-y_1 = m(x-x_1)$$

 $y-(-2) = \frac{3}{4}(x-3)$
 $4(y+2) = 3(x-3)$

$$4(y+2) = 3(x-3)$$

$$4y + 8 = 3x - 9$$

 $4y + 8 - 3x + 9 = 0$

$$-3x + 4y + 17 = 0$$

$$3x - 4y - 17 = 0$$

31. Reduce the equation 3x + 4y - 2 = 0 into intercept form.

Sol.
$$3x + 4y - 2 = 0$$

$$3x + 4y = 2$$

Dividing both sides by 2, we have:

$$\frac{3x}{2}+\frac{4y}{2}=\frac{2}{2}$$

$$\frac{x}{\frac{2}{3}} + \frac{y}{\frac{2}{4}} = 1 \implies \boxed{\frac{x}{\frac{2}{3}} + \frac{y}{\frac{1}{2}} = 1}$$

32. Find the slope of a line which is perpendicular to the line joining $P_1(2, 4)$, $P_2(-2, 1)$.

Sol. Slope of line joining given point:

$$= \mathbf{m}_{_{1}} = \frac{\mathbf{y}_{_{2}} - \mathbf{y}_{_{1}}}{\mathbf{x}_{_{2}} - \mathbf{x}_{_{1}}} = \frac{1 - 4}{-2 - 2} = \frac{-3}{-4} = \frac{3}{4}$$

Slope of require line = $m_0 = ?$

As, both lines are perpendicular,

So,
$$m_1 m_2 = -1 \implies \left(\frac{3}{4}\right) m_2 = -1$$

$$\Rightarrow m_{_2} = -1 \times \frac{4}{3} \ \Rightarrow \boxed{m_{_2} = -\frac{4}{3}}$$

33. Is the point (0,4) inside or outside the circle of radius 4 with center at (-3,1).

Sol. $|\overline{CP}|$ = Distance between Center

$$(-3,1)$$
 and point $(0,4)$.

$$\mid \overline{\mathbf{CP}} \mid = \sqrt{\left(\mathbf{x}_{1} - \mathbf{x}_{2}\right)^{2} + \left(\mathbf{y}_{1} - \mathbf{y}_{2}\right)^{2}}$$

$$|\overline{CP}| = \sqrt{(0+3)^2 + (4-1)^2}$$

$$|\overline{CP}| = \sqrt{(3)^2 + (3)^2} = \sqrt{9+9}$$

$$|\overline{CP}| = \sqrt{18} = \boxed{4.4} > 4$$

As distance between both points is greater than 4 so the point (0, 4)

lie outside the circle.

34. For the triangle A(1,3), B(-2,1), C(0,-4), find slope of a line parallel to \overline{AC} .

Sol. Slope of line $\overline{AC} = \frac{y_2 - y_1}{x_2 - x_1}$

$$=\frac{-4-3}{0-1}=\frac{-7}{-1}=7$$

Hence Slope of line parallel to $\overline{AC} = \boxed{7}$

EDUGATE Up to Date Solved Papers 24 Applied Mathematics-II (MATH-212)

- **35.** Find the equation of circle with center (-1, 2) and radius $\mathbf{r} = \sqrt{2}$.
- Sol. Standard form of equation of circle:

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$
Put h = -1, k = 2 & r = $\sqrt{2}$

$$(x-(-1))^{2} + (y-2)^{2} = (\sqrt{2})^{2}$$

$$(x+1)^{2} + (y-2)^{2} = 2$$

$$x^{2} + 2x + 1 + y^{2} - 4y + 4 - 2 = 0$$

$$x^{2} + y^{2} + 2x - 4y + 3 = 0$$

- 36. Find the center and radius of the circle: $x^2 + y^2 4x + 6y 12 = 0$
- **Sol.** $x^2 + y^2 4x + 6y 12 = 0$ Comparing with General form of equation of circle: $x^2 + y^2 + 2ex + 2fy + c = 0$

Radius =
$$\mathbf{r} = \sqrt{\mathbf{g}^2 + \mathbf{f}^2 - \mathbf{c}}$$

 $\mathbf{r} = \sqrt{(-2)^2 + (3)^2 - (-12)}$
 $\mathbf{r} = \sqrt{4 + 9 + 12} = \sqrt{25} = \boxed{5}$

- 37. Write the general form of the circle, also represent the center and radius in this form.
- Sol. $x^2 + y^2 + 2gx + 2fy + c = 0$ Center = (-g, -f)& Radius = $\sqrt{g^2 + f^2 - c}$

Section - II

Note: Attemp any three (3) questions $3 \times 10 = 30$

Q.2.[a] If
$$f(x) = \frac{x-1}{x+1}$$
, show that;

$$\frac{f(x)-f(y)}{1+f(x)f(y)} = \frac{x-y}{1+xy}$$

- **Sol.** See Q.9 of Ex # 1.1 (Page # 7)
- **[b]** Differentiate $\left(\frac{x+1}{x-1}\right)^2$ w.r.t. 'x'.
- **Sol.** See Q.4(ix) of Ex # 2.2 (Page # 58)
- **Q.3.[a]** Find the derivative of $\frac{\sin x}{1 \cos x}$ w.r.t. 'x'.
- **Sol.** See Q.3(ix) of Ex # 3.1 (Page # 116)
- [b] Find the maximum and minimum (extreme) values of the function $(x-2)^2(x-1)$.
 - **Sol.** See Q.2(vi) of Ex # 4.2 (Page # 190)
 - **Q.4.[a]** Evaluate $\int \frac{dx}{\sqrt{x+a} + \sqrt{x+b}}$
 - **Sol.** See Q.15 of Ex # 5.1 (Page # 231)
 - **[b]** Evaluate $\int (\sin^3 x) dx$
 - **Sol.** See Q.4(i) of Ex # 6.1 (Page # 267)
 - Q.5.[a] Integrate $\int (x^2 \tan^{-1} x) dx$
 - **Sol.** See Q.2(ii) of Ex # 6.3 (Page # 285)
 - **[b]** Find the point which is two third of the way from the point (5, 1) to the point (-2, 9).
 - **Sol.** See Q.6 of Ex # 8.2 (Page # 366)
 - **Q.6.[a]** Show that the given points are the vertices of a parallelogram (-3, 1), (-1, 7), (2, 8) and (0, 2).
 - **Sol.** See Q.5[a] of Ex # 8.3 (Page # 376)
 - [b] Find the equation of circle having (-2, 5) and (3, 4) as the end points of its diameter. Find also its center and radius.
 - **Sol.** See Q.8 [a] of Ex # 9 (Page # 447)