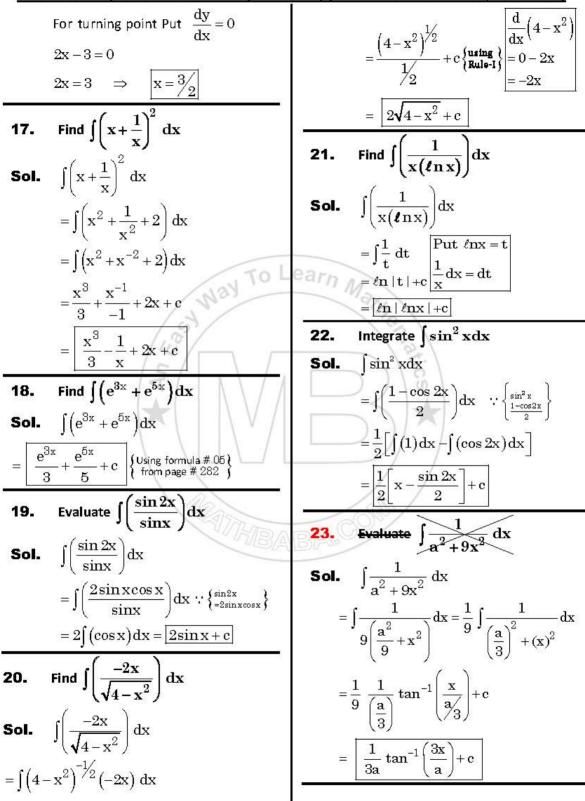
EDUGATE Up to Date Solved Papers 1 Applied Mathematics-II (MATH-212) DAE/IA - 2016					
MATH-212 APPLIED MATHEMATICS-II			7.	$\frac{d}{dx}(e^{3x}) =$	
PART - A (OBJECTIVE)				P.000.00	[b] e ^{x-1}
	:30 Minutes	Marks:20		[c] 3e ^{3x}	[d] 3xe ^{3x}
122.00		correct answer.			
1.	$\lim_{x\to 2} (x-1) =$		8.	$\frac{\mathrm{d}}{\mathrm{dx}}(t \mathrm{n} \sin x)$	()= (
	[a] 1	[b] 2		[a] cotx	$[b] \frac{1}{\sin x} ln \sin x$
	[c] 3 1			[c] ℓn cos x	SHIA
2.	$\lim_{x\to\frac{\pi}{2}}\frac{1}{\cos\theta}=$?	_		[u] tailx
	12.5			$\int \left(\sqrt{x}\right) dx =$	
	[a] 0	[D] ω 2		$\begin{bmatrix} 1 \\ 1 \end{bmatrix}^{\frac{1}{2}}$	(b) 2x ^{1/2}
	[c] 1	$[d] = \frac{\pi}{\pi} $ To L	earn	$\begin{bmatrix} a \end{bmatrix} - x^{-1}$	[b] <u></u>
2	$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}\left(\frac{1}{\mathbf{x}}\right) =$	$[b] \infty$ $[d] \frac{2}{\pi}$ To L		$[c] \frac{2}{2} x^{\frac{3}{2}}$	[d] $\frac{1}{1/2}$
	$dx(x)^{-}$	2			$2x^{7_2}$
	[a] $rac{1}{\mathbf{x}^2}$	$[b] - \frac{1}{2}$	10.	$\int \left(\frac{\cos x}{\sin x}\right) dx$	=?
		$\begin{bmatrix} b \end{bmatrix} - \frac{1}{x^2}$		[a] lncosx	
	[c] $-\frac{1}{x^3}$	$[d] \frac{z}{v}$		< .	120
				[c] lncotx	[d] $\frac{\cos x}{2}$
4.	$\frac{\mathrm{d}}{\mathrm{dx}}\left(\sqrt{1+\mathrm{x}}\right)$ =	ヽヽL」_/ L	11.	$\int e^{2x} dx = 2$ [a] $\frac{e^{2x}}{2}$	5
	[a] $rac{1}{\sqrt{1+\mathrm{x}}}$	[b] <u>1</u>		24	~ ~2
		191-	/	[a] $\frac{e^{}}{2}$	[b] <u>e</u> [*] _2
	[c] $(1+x)^{\frac{1}{3}}$	$[d] \frac{-1}{2 h \ln r}$	DAG		
			DIA	[c] 2e**	$[\mathbf{d}] \; \frac{\mathrm{e}^{2^{\chi+1}}}{2}$
5.	$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x^2)$	=	12.	1-12	lx =?
	[a] $2x \sec^2 x^2$	$[b] \operatorname{sec}^2 x^2$	12.	$\int \sqrt{1-x^2}$	1x = ?
	[c] $\sec x^2$	$[d] \sec^2 x$		[a] sin⁻¹ x	[b] cos ⁻¹ x
6.	$\frac{d}{dx}$ sec 2x	$\widehat{\mathbf{y}} = 2$		$[c] \operatorname{sec}^{-1} x$	[d] $\sqrt{1-x^2}$
and and	dx		13.	$\int (\cos ec x)$	CHARLES GROUP STOR
	[a] $\frac{1}{\sqrt{1-2}}$	$\frac{1}{1}$ [b] $\frac{1}{x\sqrt{4x^2-1}}$		[a] ℓn (cosec	
				[b] $ln \sec x$	
	$[c] \frac{1}{\sqrt{v^2 - 1}}$	[d] $\frac{1}{2x\sqrt{x^2-1}}$		[c] $\ell n (\cos ec)$	$\mathbf{x} + \cot \mathbf{x}$
	VA -1	4AYA -1			A (COUX)
	_			[d] cosx	


ED	UG	AT	ΕU	p to	Dat	e So	olve	d Pa	apers	2 Aj	pplie	d Mathematics-II (MATH-212)
14.	22	¹ (1)								2		DAE/IA-2016
	1.0	₀、/ a] —1			[b]	0					MAT	H-212 APPLIED MATHEMATICS-II
		a] —] [] 1			[d]							PART - B(SUBJECTIVE)
15.	55	'he sl	one	of v.	20.2						Time	e:2:30Hrs Marks:60
15.		a] 0°	27			30°					~ 1 \	Section - I
	38	315			25							Write short answers to any Twenty Five (25)
16.	[c] 45° [d] 60° When two lines are parallel:							l:				of the follwing questions. $25 \times 2 = 50$
						m₁r				1		If $f(x) = 3x^2 - 7x + 4$, then
			<u>.</u>	65		m ₁	80.0					find $f\left(\frac{1}{x}\right)$.
17.	Ν	/idp	oint	of A	(2,	5) &	. в(7,-	3):	5	Sol.	As, $f(x) = 3x^2 - 7x + 4$
	[;	a] $\left(\frac{9}{2}\right)$	$\frac{9}{2}, 1$)	[b]	(1,	$\left(\frac{9}{2}\right)$	~	TO	Lear	n n	Replace 'x' by ' $\frac{1}{x}$ ', we have:
	[•	c] (1	$,\frac{2}{9}$		[d]	$\left(\frac{2}{9}\right)$,1)	03			~	Replace 'x' by ' $\frac{1}{x}$ ', we have: $f\left(\frac{1}{x}\right) = 3\left(\frac{1}{x}\right)^2 - 7\left(\frac{1}{x}\right) + 4$
18.	3								[$=\frac{3}{x^2} - \frac{7}{x} + 4 = \frac{3 - 7x + 4x^2}{x^2}$
	[a] Slope intercept form						η	11			2.	Show that the function
	[b] Intercepts form								V/ i			$f(x) = x^4 - 7x^2 + 7$ is an even
	[c] Point - Slope form								V /			function of 'x'.
	[d] T∖	vo -	Point	ts fo	rm					Sol.	$f(x) = x^4 - 7x^2 + 7$
19.	R	adiu	s of	the d	ircle	• x ²	$+ y^{2}$	=1	is:			Replace 'x' by '-x', we have :
	[;	a] 1			[b]	0	n					$f(-x) = (-x)^4 - 7(-x)^2 + 7$
	[0	c] 2			[d]	-1	Ľ	177	Lillion		C	$f(-x) = x^4 - 7x^2 + 7$
20.									VB	ALB3/	Tue	f(-x) = f(x)
	(x – 1	$h)^2$	+(y	– k) ² = 1	r² is	;;				Hence $f(x)$ is an even function.
	[;	a] (h	1, k))	[b]	(-h	ı, k)		-	1	
	[0	c] (h	ı, —]	k)	[d]	(-h	ı, –	k)			3.	Evaluate: $\lim_{\mathbf{x} o 3} \sqrt{25 - \mathbf{x}^2}$
Answer Key									Sol.	$\lim_{\mathbf{x}\to3}\sqrt{25-\mathbf{x}^2}$		
1	a	2	b	3	b	4	b	5	a		$=\sqrt{2}$	$5-(3)^2 = \sqrt{25-9} = \sqrt{16} = 4$
6	a	7	с	8	a	9	c	10	b	-	Y	
11	a	12	b	13	a	14	a	15	a	4		Evaluate: $\lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x}$
16	a	17	a	18	b	19	a	20	a			
*	* * *	***	* * *	***	* * :	* * *	* * '	* * *		5	sol.	$\lim_{\mathbf{x}\to 0} \frac{1-\cos \mathbf{x}}{\sin^2 \mathbf{x}} \left(\frac{0}{0}\right) \text{form}$

EDUGATE Up to Date Solved Papers 3 Applied Mathematics-II (MATH-212)

ED	UGATE UP to Date Solved Papers 3	S Applieu Wathematics-IT(WATH-ZIZ)
	$= \lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x} \times \frac{1 + \cos x}{1 + \cos x}$	Sol. $\frac{d}{dx}(y) = \frac{d}{dx}\left(x^{\frac{2}{3}}\right)$
	$= \lim_{x \to 0} \frac{(1)^2 - (\cos x)^2}{\sin^2 x (1 + \cos x)}$	$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{2}{3} \mathrm{x}^{-1/3}$
	$= \lim_{x \to 0} \frac{1 - \cos^2 x}{\sin^2 x (1 + \cos x)}$	$\frac{\mathrm{dx}}{\mathrm{dx}} = \frac{2}{3x^{\frac{1}{3}}}$
		$dx = \frac{1}{3x} dx$
	$= \lim_{x \to 0} \frac{\sin^2 x}{\sin^2 x(1 + \cos x)}$	At $x = 8$
	$= \lim_{x \to 0} \frac{1}{1 + \cos x}$	$\left. \frac{\mathrm{dy}}{\mathrm{dx}} \right _{\mathrm{x=8}} = \frac{2}{3(8)^{\frac{1}{3}}} = \frac{2}{3(2^3)^{\frac{1}{3}}}$
	1 1 1	
	$=\frac{1}{1+\cos 0} = \frac{1}{1+1} = \left \frac{1}{2}\right $	$\frac{\mathrm{dy}}{\mathrm{dx}}\Big _{\mathrm{y}=8} = \frac{2}{3(2)} \Rightarrow \left \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{1}{3}\right $
5.	Find $\frac{dy}{dx}$ if $y = x^3 + x^2 + 2x + 3$	
Sol.	Differentiate both sides w.r.t. 'x':	8. Find $\frac{dy}{dx}$ if $x^3 + y^3 + 4 = 0$
	$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}(\mathbf{y}) = \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left(\mathbf{x}^3 + \mathbf{x}^2 + 2\mathbf{x} + 3 \right)$	Sol. Differentiate both sides w.r.t. 'x':
	ux ux u	$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}\left(\mathbf{x}^3 + \mathbf{y}^3 + 4\right) = \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}\left(0\right)$
	$\frac{dy}{dx} = 3x^2 + 2x + 2(1) + 0$	ux ux
		$3x^2 + 3y^2 \frac{dy}{dx} + 0 = 0$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2x + 2$	ux
		$3y^2 \frac{dy}{dx} = -3x^2$
6.	Differentiate $\frac{1}{\sqrt{a^2 - x^2}}$	
		$\frac{\mathrm{d} \mathrm{y}}{\mathrm{d} \mathrm{x}} = \frac{-3\mathrm{x}^2}{3\mathrm{y}^2} \Longrightarrow \frac{\mathrm{d} \mathrm{y}}{\mathrm{d} \mathrm{x}} = -\frac{\mathrm{x}^2}{\mathrm{y}^2}$
Sol.	$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}\left(\frac{1}{\sqrt{\mathbf{a}^2-\mathbf{x}^2}}\right)$	
	$dx\left(\sqrt{a^2-x^2}\right)$	9. Differentiate $x^3 + 8$ w.r.t. $x^2 + 4$
	$d(12)^{-1/2}$	Sol. Let $y = x^3 + 8$ & $t = x^2 + 4$
	$=\frac{d}{dx}\left(\left(a^{2}-x^{2}\right)^{-\frac{1}{2}}\right)$	Differentiate both sides w.r.t. 'x' :
	$= -\frac{1}{2} \left(a^{2} - x^{2} \right)^{-\frac{1}{2}-1} \left(\frac{d}{dx} \left(a^{2} - x^{2} \right) \right)$	$\frac{\mathrm{d}}{\mathrm{d}x}(y) = \frac{\mathrm{d}}{\mathrm{d}x}(x^3 + 8) \left \frac{\mathrm{d}}{\mathrm{d}x}(t) = \frac{\mathrm{d}}{\mathrm{d}x}(x^2 + 4) \right $
	$2^{(\alpha + \gamma)} \left(dx^{(\alpha + \gamma)} \right)$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 0 \qquad \qquad \frac{\mathrm{d}t}{\mathrm{d}x} = 2x + 0$
	$=-\frac{1}{2}(a^2-x^2)^{-3/2}(0-2x)$	
	4	$\frac{dy}{dx} = 3x^2$ $\frac{dx}{dt} = \frac{1}{2x}$
	$= \frac{-1(-2x)}{x} = \frac{x}{x}$	
	$=\frac{-1(-2x)}{2(a^2-x^2)^{3/2}}=\boxed{\frac{x}{(a^2-x^2)^{3/2}}}$	using chain rule :
	-()	$rac{\mathrm{d} \mathbf{y}}{\mathrm{d} \mathbf{t}} = rac{\mathrm{d} \mathbf{y}}{\mathrm{d} \mathbf{x}} imes rac{\mathrm{d} \mathbf{x}}{\mathrm{d} \mathbf{t}} = 3\mathbf{x}^2 imes rac{1}{2\mathbf{x}} = \left rac{3}{2}\mathbf{x} ight $
7.	Find $rac{\mathrm{d} \mathbf{y}}{\mathrm{d} \mathbf{x}}$ at the given point, if	
		10. Find the derivative of $x \cot x$
	$y = x^{\frac{2}{3}}$ at $x = 8$.	w.r.t. 'x'.

$\overline{\mathbf{ED}}$	UGATE Up to Date Solved Papers	4 Applied Mathematics-II (MATH-212)		
Sol.	$\frac{d}{dx}(x \cot x) \left\{ {}^{\text{using}}_{\text{Product Rule}} \right\}$		Differentiate both equations	
	un l		both sides w.r.t. 't':	
	$=\left(\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})\right)\mathrm{cot}\mathrm{x}+\mathrm{x}\left(\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{cot}\mathrm{x})\right)$	$\frac{\mathrm{d}}{\mathrm{dt}}($	$\mathbf{x} = \frac{\mathrm{d}}{\mathrm{dt}} (\mathrm{a} \sin t) \left \frac{\mathrm{d}}{\mathrm{dt}} (\mathbf{y}) = \frac{\mathrm{d}}{\mathrm{dt}} (\cos at) \right $	
	$= 1. \cot x + x \left(-\csc^2 x \right)$		dx $dy = -\sin at \left(\frac{d}{dt}(at)\right)$	
	$= \cot x - x \cos ec^2 x$		$\frac{dx}{dt} = a \cos t \qquad dt \qquad (dt (dt (dt (dt (dt (dt (dt (dt (dt (dt$	
11.	Find the value of		$\frac{dt}{dt}$	
	$\frac{d}{dx}(\sin^{-1}x + \cos^{-1}x)$		$\frac{dt}{dt} = \frac{1}{a\cos t} \left \begin{array}{c} \frac{dy}{dt} = -\sin at(a) \\ \frac{dy}{dt} = -\sin at \end{array} \right \\ \frac{dy}{dt} = -a\sin at \end{array}$	
Sol.	$\frac{d}{dx} \left(\sin^{-1} x + \cos^{-1} x \right)$		By using Chain's Rule : $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$	
		earn	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(-\operatorname{a}\sin\operatorname{at}\right)\left(\frac{1}{\operatorname{a}\cos\operatorname{t}}\right)$	
	$\sqrt{1-x^2}$ $\sqrt{1-x^2}$		dy = -sin at	
12.	Find d ax		$dx = \cos t$	
	$d(x^2)$	15.	If $y = \ell n x$, find y_2	
501.	$\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{a}^{\mathrm{x}^2})$	Sol.	$\mathbf{y} = \ell \mathbf{n} \mathbf{x}$	
	$=a^{x^2}(\ell n a)\left(\frac{d}{dx}(x^2)\right)$		Differentiate both sides w.r.t. 'x':	
			$\frac{d}{dx}(y) = \frac{d}{dx}(\ell n x)$	
	$=a^{x^{2}}\left(\ell n a\right)\left(2x\right)=2x\left(\ell n a\right)a^{x^{2}}$		$y_1 = \frac{1}{2}$	
13.	Find the derivative of $\logigl(\cos^2 xigr)$		x Differentiate both sides w.r.t. 'x':	
Sol.	$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left(\log\left(\cos^2 \mathbf{x}\right) \right)$			
	us villations	DAC	$\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{y}_1) = \frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{\mathrm{x}}\right)$	
	$=\frac{1}{\cos^2 x}\left(\frac{d}{dx}(\cos^2 x)\right)$	Ellero	$d(-1)$ $1()^{-2}$ -1	
			$y_2 = \frac{d}{dx}(x^{-1}) = -1(x)^{-2} = \frac{-1}{x^2}$	
	$=\frac{1}{\cos^2 x}.2\cos x\left(\frac{d}{dx}(\cos x)\right)$	16.	Find the turning point of the curve	
	the second se		$\mathbf{y} = \mathbf{x}^2 - 3\mathbf{x} + 3.$	
	$=\frac{2}{\cos x}(-\sin x)$	Sol.	$\mathbf{y} = \mathbf{x}^2 - 3\mathbf{x} + 3.$	
	$=-\frac{2\sin x}{\cos x}=$ $\boxed{-2\tan x}$		Differentiate both sides w.r.t. 'x':	
			$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}(\mathbf{y}) = \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \left(\mathbf{x}^2 - 3\mathbf{x} + 3\right)$	
14.	Find $rac{\mathrm{d} \mathrm{y}}{\mathrm{d} \mathrm{x}}$ when		dy 2 0	
	$\mathbf{x} = \mathbf{a} \sin t, \mathbf{y} = \cos \mathbf{a} t$		$\frac{\mathrm{dy}}{\mathrm{dx}} = 2\mathrm{x} - 3$	
Sol.	x = asint, $y = cosat$			

EDUGATE Up to Date Solved Papers 5 Applied Mathematics-II (MATH-212)

EDUGATE Up to Date Solved Papers 6 Applied Mathematics-II (MATH-212)

	COATE OF to Date Solved Tapers		
24.	Evaluate $\int (x e^x) dx$.=	$\tan\left(\frac{\pi}{4}\right) - \tan(0)$
Sol.	$\int (x e^x) dx$		
	Integrating by parts :	=	$\tan(45^{\circ}) - \tan(0^{\circ}) \left\{ \begin{array}{l} \frac{\pi}{4} \times \frac{180}{\pi} = 45^{\circ} \\ 0 \times \frac{180}{\pi} = 0^{\circ} \end{array} \right\}$
	taking $u = x \& v = e^x$		ιι
	$=x\int e^{x}dx - \int \left(\frac{d}{dx}(x)\int e^{x}dx\right)dx$		$1 - 0 = \boxed{1} \left\{ \begin{array}{l} \text{using calculator} \\ \tan(45^\circ) = 1 & \tan(0^\circ) = 0 \end{array} \right\}$
	$= x e^x - \int 1.e^x dx$	28.	Write distance formula between two points and give one example.
	$= x e^{x} - \int e^{x} dx$	Sol.	Let $A(x_1, y_1)$ & $B(x_2, y_2)$ be two
	$= x e^{x} - e^{x} + c = e^{x} (x - 1) + c$		different points, then, Distance = $ AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
25.	Evaluate $\int_{1}^{3} \frac{1}{x+1} dx$ To L	e	le: Let A(0, 0), B(1, 1) be two points,
	$J_1 \times J_1$		then
Sol.	Evaluate $\int_{1}^{3} \frac{1}{x+1} dx$ $\int_{1}^{3} \frac{1}{x+1} dx$		$ \overline{AB} = \sqrt{(0-1)^2 + (0-1)^2}$
	$= \left[\ell n \left(x + 1 \right) \right]_{1}^{3} \left\{ \begin{array}{c} \text{using} \\ \text{Rule-II} \end{array} \right\}$	-	$ \overline{AB} = \sqrt{1+1} = \sqrt{2}$
	$= \ell n (3+1) - \ell n (1+1)$	19.	Find the coordinates of the mid-
	$= \ell n(4) - \ell n(2)$		point of the segment $P_1(3,7)$ and $P_2(-2,3)$.
	$= \ell n \left(\frac{4}{2}\right) = \ell n 2$	Sol.	Mid - point = $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
÷		001.	
26.	Evaluate $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$		$=\left(\frac{3+(-2)}{2}, \frac{7+3}{2}\right)$
Sol.	$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$	BA.C	$=\left(\frac{3-2}{2},\frac{10}{2}\right)=\left[\left(\frac{1}{2},5\right)\right]$
	$=\left[\sin^{-1}\mathbf{x}\right]_{0}^{1}$	30.	Find the coordinates of the point
	$ = \sin^{-1}(1) - \sin^{-1}(0) $	0.000	P(x, y) which divide internally
			the segment through $P_1(-2,5)$
	$=90^{\circ}-0^{\circ}=\frac{\pi}{2}-0=\boxed{\frac{\pi}{2}}$		and $P_2(4, -1)$ of the ratio of
27.	Evaluate $\int_0^{\pi/4} \frac{\mathrm{dx}}{\cos^2 x}$		$\frac{\mathbf{r}_1}{\mathbf{r}_2} \neq \frac{6}{5} \cdot 1$
Sol.	$\int_{0}^{\pi/4} \frac{dx}{\cos^2 x} = \int_{0}^{\pi/4} (\sec^2 x) dx$	Sol.	Here: $\mathbf{r}_1 = 6$, $\mathbf{r}_2 = 5$, $(\mathbf{x}_1, \mathbf{y}_1) = (-2, 5)$
	$= \begin{bmatrix} \tan x \end{bmatrix}_{4}^{\frac{1}{4}} \begin{cases} \text{Using formula # 13} \\ \text{from page # 282} \end{cases}$	- 15 ASSE(0.7	$\& (\mathbf{x}_2, \mathbf{y}_2) = (4, -1)$
		20 CC	$r_1=6$ $r_2=5$ $p_1(-2,5)$ $p_2(x,y)$ $p_2(4,-1)$
	Available online @ <u>ht</u>	ttps://m	athbaba.com

EDUGATE Up to Date Solved Papers 7 Applied Mathematics-II (MATH-212)

ear

$$P(\mathbf{x}, \mathbf{y}) = \left(\frac{\mathbf{r}_{1}\mathbf{x}_{2} + \mathbf{r}_{2}\mathbf{x}_{1}}{\mathbf{r}_{1} + \mathbf{r}_{2}}, \frac{\mathbf{r}_{1}\mathbf{y}_{2} + \mathbf{r}_{2}\mathbf{y}_{1}}{\mathbf{r}_{1} + \mathbf{r}_{2}}\right)$$
$$= \left(\frac{6(4) + 5(-2)}{6 + 5}, \frac{6(-1) + 5(5)}{6 + 5}\right)$$
$$= \left(\frac{24 - 10}{11}, \frac{-6 + 25}{11}\right) = \boxed{\left(\frac{14}{11}, \frac{19}{11}\right)}$$

- 31. Reduce the equation 3x + 4y - 2 = 0 into intercept form. Sol. 3x + 4y - 2 = 0 3x + 4y = 2Dividing both sides by 2, we have: $\frac{3x}{2} + \frac{4y}{2} = \frac{2}{2}$ $\frac{x}{2/3} + \frac{y}{2/3} = 1 \implies \boxed{\frac{x}{2/3} + \frac{y}{1/3} = 1}$ 32. Find the distance from the point
 - $\frac{-2}{(-2, 1)} \text{ to the line } \frac{3x+4y-12=0}{3x+4y-12=0}$

Sol.

Distance between point & line

$$D = \frac{|ax_{1} + by_{1} + c|}{\sqrt{a^{2} + b^{2}}}$$
$$D = \frac{|3(-2) + 4(1) - 12|}{\sqrt{(3)^{2} + (4)^{2}}}$$
$$D = \frac{|-6 + 4 - 12|}{\sqrt{9 + 16}} = \frac{|-14|}{\sqrt{25}} = \boxed{\frac{14}{5}}$$

33. Find the equation of the line passing through the point

$$(2, 3)$$
 and having slope $-$

Sol. Equation of line in point - slope form : $y - y_1 = m(x - x_1)$

$$y-3 = -\frac{1}{2}(x-(-2))$$

2(y-3) = -1(x+2)
2y-6 = -x-2
2y-6+x+2=0
x+2y-4=0

- 34. Find the equation of a line through the points (-1, 2) and (3, 4).
 - **Sol.** Slope $=\frac{y_2 y_1}{x_2 x_1} = \frac{4 2}{3 (-1)} = \frac{2}{4} = \frac{1}{2}$

Equation of line in point - slope form :

$$y - y_{1} = m(x - x_{1})$$

$$y - 2 = \frac{1}{2}(x - (-1))$$

$$2(y - 2) = 1(x + 1)$$

$$2y - 4 = x + 1$$

$$2y - 4 - x - 1 = 0$$

$$-x + 2y - 5 = 0$$

$$x - 2y + 5 = 0$$

35. Define point circle. **Sol.** A circle is called point circle if $\mathbf{r} = 0$

36. Write the equation of circle with, center at (h, k) and radius 'r'.

Sol. $(x-h)^2 + (y-k)^2 = r^2$

37. Find center and radius of the circle $x^2 + y^2 - 4x + y - 1 = 0$

Sol. $x^2 + y^2 - 4x + y - 1 = 0$ Comparing with General form of equation of circle : $x^2 + y^2 + 2gx + 2fy + c = 0$

EDUGATE Up to Date Solved Papers	3 Applied Mathematics-II (MATH-212)
$\begin{array}{c c c} 2\mathbf{g} = -4 \\ \mathbf{g} = -\frac{4}{2} \\ \mathbf{g} = 2 \end{array} & 2\mathbf{f} = 1 \\ \mathbf{f} = \frac{1}{2} \\ \mathbf{c} = -1 \\ \mathbf{c} = -1 \end{array}$	[b] Find the maximum and minimum
$g = -\frac{4}{-1} \begin{vmatrix} 21 = 1 \\ 1 \end{vmatrix} c = -1$	values of the function ${f x}^2-4{f x}-6$.
$2 f = \frac{1}{2}$	Sol. See $\mathrm{Q.2(i)}$ of $\mathrm{Ex}\#4.2$ (Page $\#183$)
Center = (-g, -f)	Q.4.[a] Integrate $\int \left(\frac{1}{\sqrt{1+x}-\sqrt{x}}\right) dx$
$=\left(-\left(-2 ight),-rac{1}{2} ight)=\left(2,-rac{1}{2} ight)$	$\sqrt{1+x} - \sqrt{x}$
	Sol. See Q.16 of $\mathrm{Ex}\#5.1ig(extsf{Page}\#232ig)$
$Radius = r = \sqrt{g^2 + f^2 - c}$	
$r = \sqrt{(-2)^2 + (\frac{1}{2})^2 - (-1)}$	[b] Find ∫(cos ³ x)dx
	Sol. See example $#5$ of Chapter 06.
$\mathbf{r} = \sqrt{4 + \frac{1}{4} + 1}$	
$r = \sqrt{4 + \frac{1}{4} + 1}$ $r = \sqrt{\frac{16 + 1 + 4}{4}}$ $r = \sqrt{\frac{21}{4}}$	Q.5.[a] Evaluate $\int \left(x^2 \mathrm{e}^x ight) \mathrm{d}x$
V_4	Sol. See example #16 of Chapter 06.
$r = \sqrt{\frac{21}{4}}$	13
$\sqrt[4]{\sqrt{21}}$	[b] Find the point which is $\frac{7}{10}$ of the
$\mathbf{r} = \left \frac{\sqrt{21}}{2} \right $	
Section - II	way from the point (4, 5) to the point (-6, 10).
	Sol. See Q.5 of Ex # 8.2 (Page # 366)
Note : Attemp any three (3) questions $3 \times 10 = 30$	CON See Q .0 or EA # 0.2 (Page # 000)
Q.2.[a] Show that $\frac{e^x + 1}{e^x - 1}$ is an odd	Q.6.[a] A line is parallel to the line
function of 'x'.	$\frac{2x+3y-5 \text{ and pass through (1, 3)}}{2x+3y-5 \text{ and pass through (1, 3)}}$
Sol. See Q.12(i) of Ex # 1.1 (Page # 10)	Find an equation for the line.
	Sol. See Q.8 of Ex # 8.4 (Page # 387)
1+x	
[b] Find the derivative $\sqrt{\frac{1+x}{1-x}}$ w.r.t.	[b] Find which of the two circles
'x'.	$\mathbf{x}^2+\mathbf{y}^2-3\mathbf{x}+4\mathbf{y}=0$ and
Sol. See $Q.4(iv)$ of $Ex \# 2.2$ (Page $\# 55$)	$\mathbf{x}^2 + \mathbf{y}^2 - 6\mathbf{x} - 8\mathbf{y} = 0$ is greater.
	Sol. See Q.7 of Ex # 9 (Page # 446)
Q.3.[a] Find the derivative of	* * * * * * * * * * * * *
$\sin^2 x \cos^3 x$ w.r.t. 'x'.	
Sol. See $Q.3(iv)$ of $Ex # 3.1 (Page # 113)$	