EDUGATE Up to Date Solved Papers 1 Applied Mathematics-II (MATH-233) Paper A

DOOMID OP to Date oowed rapers 1	Applied	1 1410	iunci	nau	C2-11	
DAE/IA-2016		[a] e	ms x		
MATH-233 APPLIED MATHEMATICS-II		I	c] si	n xe	sinx-	1
PAPER 'A' PART - A (OBJECTIVE)	9.	2	12000		1	~
Time:30Minutes Marks:15	9.	32	$\frac{d}{dx}$	x J	=:	10 14
Q.1: Encircle the correct answer.		[a] a	x ^{a-1}	[b] :	X
1. If $f(x) = 3^x - 1$, then $f(3) = ?$	10.	I	f 2^{nd}	de	riva	t
[a] 27 [b] 8 [c] 26 [d] 16		F	ooint	, the	en fu	ı
2. Which one is the periodic function:			a] Ⅳ			
[a] $x^2 + 1$ [b] $2x$			c] Po			
[c] $\sin x$ [d] $x^3 + 1$]	d] N	one	of t	j
3. $\lim_{x \to \frac{\pi}{2}} (\cos x) = ?$	11.	F	or a	dec	reas	į
· · · · · · · · · · · · · · · · · · ·			a] +			
[a] $\frac{\sqrt{3}}{2}$ [b] $\frac{1}{2}$ [c] 0 [d] $\frac{1}{\sqrt{2}}$	earn _A	h	c] ze	ero		
4. $\frac{d}{dx}\left(\frac{1}{x}\right) = ?$	earn / 12.	190	$\frac{d}{dx}$	tan	\mathbf{x}^2	1
ux(x)		[a] 2	xsee	c° x°	1
[a] $rac{1}{\mathrm{x}^2}$ [b] $-rac{1}{\mathrm{x}^2}$ [c] $-rac{1}{\mathrm{x}^3}$ [d] $rac{2}{\mathrm{x}}$	12122304	- 1 ×	c] se			
	13.	_	A val			
5. $\frac{d}{dx}(\sqrt{1+x}) = ?$			umb		of tu	1
ux · ·			alleo a] N			
[a] $\frac{1}{\sqrt{1+x}}$ [b] $\frac{1}{2\sqrt{1+x}}$		10	b] G			С
		100	c] H	10		
[c] $(1+x)^{\frac{1}{3}}$ [d] $\frac{-1}{2\sqrt{1+x}}$	14.	Ø	The o	olle	ctio	n
	BIAL		outco		s of	ē
$6. \qquad \frac{\mathbf{d}}{\mathbf{d}\mathbf{x}}(2\cos 3\mathbf{x}) = ?$			alle			
[a] 6sin3x [b] -6sin3x			a] Po		atio	r
$[c] - 6\cos 3x$ [d] $6\cos 3x$		-	c] Tr			
~ /	15.		A qua			
7. $\frac{d}{dx}(\sin^{-1}\sqrt{x}) = ?$			ixed			1
			a] Co c] Pa			r
[a] $rac{1}{\sqrt{1-{ m x}^2}}$ [b] $rac{1}{\sqrt{1+{ m x}^2}}$		L	e 1 1 e		nsw	
		d	2	b		
[c] $\frac{1}{2\sqrt{x}\sqrt{1-x}}$ [d] $\frac{1}{2\sqrt{x}(1-x)}$	1	u b	7	b c	3	-
	11	b	12	a	13	-
8. $\frac{d}{dx}(e^{\sin x}) = ?$		**		(***)	, stateth	•
Jus -						
		11.000				

[b] $\cos x e^{\sin x}$ $[d] \sin x e^{\sin x}$ -1 ~ ? x^{n-1} [c] ax^{a} [d] x^{a} ative is $+\mathbf{ve}\,\,\mathbf{at}\,\mathbf{a}$ function is: n [b] Minimum inflection these using function $\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}}$ is: [b] -ve [d] None of these) = ?[b] $\sec^2 x^2$ 2 $[d] \tan x^2$ ch occurs maximum imes in the data is ic Mean c Mean [d] Mode on of all possible f an experiment is on **[b]** An event [d] Sample space vhose value remains d; [b] Variable er [d] Function wer Key 4 b 5 b a b 9 a 10 b

> d 14 d 15 a

EDUGATE Up to Date Solved Papers 2 Applied Mathematics-II (MATH-233) Paper A

12	DAE / IA - 2016		$1 - \cos \left(0 \right)$
MATH	-233 APPLIED MATHEMATICS-II	Sol.	$\lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x} \left(\frac{0}{0}\right) \text{form}$
P	APER 'A' PART-B(SUBJECTIVE)		$= \lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x} \times \frac{1 + \cos x}{1 + \cos x}$
Time	:2:30Hrs Marks:60		
	Section - I		$= \lim_{x \to 0} \frac{(1)^{2} - (\cos x)^{2}}{\sin^{2} x(1 + \cos x)}$
Q.1.	Write short answers to any		
1.	Eighteen (18) questions. if $f(x) = 3x^2 - 5x + 7$, find $f(4)$		$= \lim_{\mathbf{x} \to 0} \frac{1 - \cos^2 \mathbf{x}}{\sin^2 \mathbf{x} (1 + \cos \mathbf{x})}$
Sol.	$f(x) = 3x^2 - 5x + 7$		
001	Put $x = 4$, we have:		$= \lim_{x \to 0} \frac{\sin^2 x}{\sin^2 x (1 + \cos x)}$
	$f(4) = 3(4)^2 - 5(4) + 7$		$= \lim_{x \to 0} \frac{1}{1 + \cos x}$
	f(4) = 48 - 20 + 7 = 35	earn n	$=\frac{1}{1+\cos 0}=\frac{1}{1+1}=\left \frac{1}{2}\right $
2.	Is the function even, odd or	5.	Differentiate w.r.t. 'x'
	neither? $\mathbf{f}(\mathbf{x}) = \mathbf{x}\sqrt{\mathbf{x}^2 - 1}$		$-5+3x-\frac{3}{2}x^2-7x^3$
Sol.	As, $f(x) = x\sqrt{x^2 - 1}$		$-5 + 5x - \frac{1}{2}x - 1x$
	Replace x by $-x$, we have :	Sol.	$\frac{d}{dx}\left(-5+3x-\frac{3}{2}x^2-7x^3\right)$
	$f(-x) = -x\sqrt{(-x)^2 - 1}$		
	$f(-x) = -x\sqrt{x^2 - 1}$		$= 0 + 3(1) - \frac{3}{2}(2x) - 7(3x^{2})$
	f(-x) = -f(x)		$= 3 - 3x - 21x^2$
	Hence $\mathbf{f}(\mathbf{x})$ is an \mathbf{odd} function.	6.	Find $\frac{dy}{dx}$ if $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$
3.	Evaluate $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$	Sol.	Differentiate both sides w.r.t. 'x':
			$\frac{d}{dx}\left(x^{2/3} + y^{2/3}\right) = \frac{d}{dx}\left(a^{2/3}\right)$
Sol.	$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} \left(\frac{0}{0} \right) $ form		
	$= \lim_{x \to 1} \frac{(x)^2 - (1)^2}{x - 1}$		$\frac{2}{3}x^{-\frac{1}{3}} + \frac{2}{3}y^{-\frac{1}{3}}\frac{dy}{dx} = 0$
	$= \lim_{x \to 1} \frac{1}{x-1}$		$\frac{2}{3}y^{-\frac{1}{3}}\frac{dy}{dx} = -\frac{2}{3}x^{-\frac{1}{3}}$
	$= \lim_{x \to 1} \frac{(x-1)(x+1)}{(x-1)}$		a au a
	$\Lambda = I$		$\frac{dy}{dx} = \left(-\frac{2}{3}x^{-\frac{1}{3}}\right) \cdot \left(\frac{3}{2y^{-\frac{1}{3}}}\right)$
e	$= \lim_{x \to 1} (x+1) = 1 + 1 = 2$		
4.	Evaluate: $\lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x}$		$\frac{\mathrm{d} \mathbf{y}}{\mathrm{d} \mathbf{x}} = -\frac{\mathbf{x}^{-\frac{1}{3}}}{\mathbf{y}^{-\frac{1}{3}}} \qquad \Longrightarrow \qquad \boxed{\frac{\mathrm{d} \mathbf{y}}{\mathrm{d} \mathbf{x}} = -\frac{\mathbf{y}^{\frac{1}{3}}}{\mathbf{x}^{\frac{1}{3}}}}$
			Table (1)

EDUGATE Up to Date Solved Papers 3 Applied Mathematics-II (MATH-233) Paper A

7. Find
$$\frac{d}{dx}$$
 where $\operatorname{at}^{2} y = 2\operatorname{at}$
Sol. As, $x = \operatorname{at}^{2}$, $y = 2\operatorname{at}$
 $\frac{d}{dt}(x) = \frac{d}{dt}(\operatorname{at}^{2}) \left| \frac{d}{dt}(y) = \frac{d}{dt}(2\operatorname{at}) \right|$
 $\frac{dx}{dt} = a(2t)$
 $\frac{dy}{dt} = 2a(1)$
 $\frac{dx}{dt} = 2at$
 $\frac{dy}{dt} = 2a$
By using Chain's Rule:
 $\frac{dy}{dt} = \frac{dy}{dt} \times \frac{dt}{dx} = 2a \times \frac{1}{2at} = \left| \frac{1}{t} \right|$
8. Differentiate $\frac{x}{x^{2}+1}$ w.r.t. 'x':
 $\frac{d}{dx} \left(\frac{x^{2}}{x^{2}} + 1 \right) \left\{ \operatorname{using Quotient Rule} \right\}$
 $= \frac{(x^{2}+1)(1-x(2x+0)}{(x^{2}+1)^{2}} = \frac{1-x^{2}}{(x^{2}+1)^{2}}$
9. Differentiate $\sin(\tan x)$ w.r.t. 'x'.
Sol. $\frac{d}{dx} [\sin(\tan x)]$
 $= \cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right)$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right) \right]$
 $= \left[\cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x$

EDUGATE Up to Date Solved Papers 4 Applied Mathematics-II (MATH-233) Paper A

ro Lea

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{\sqrt{x+1}} \cdot \frac{1}{2} (x+1)^{-\frac{1}{2}} \left(\frac{\mathrm{d}}{\mathrm{d}x} (x+1) \right)$$
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{\sqrt{x+1}} \cdot \frac{1}{2\sqrt{x+1}} (1+0)$$
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^{\sqrt{x+1}}}{2\sqrt{x+1}}$$

14. Find the derivative of $x \cot x$ w.r.t. 'x'. Sol. $\frac{d}{d} (x \cot x) \{ \frac{u \sin g}{Product Rule} \}$

$$dx (- x) (Product rate)$$

$$= \left(\frac{d}{dx}(x)\right) \cot x + x \left(\frac{d}{dx}(\cot x)\right)$$

$$= 1.\cot x + x \left(-\csc^{2} x\right)$$

$$= \left[\cot x - x \csc^{2} x\right]$$

15. Differentiate $x \ell n \exists x w.r.t. 'x'$. Sol. $\frac{d}{d} (x \ell n \exists x) \{ \frac{u \text{sing}}{Product R tube} \}$

$$dx^{(n+2k+1)} (Product Rule)$$

$$= \left(\frac{d}{dx}(x)\right) \ell n \, 3x + x \left(\frac{d}{dx}(\ell n \, 3x)\right)$$

$$= 1.\ell n \, 3x + x \left(\frac{1}{3x}.\frac{d}{dx}(3x)\right)$$

$$= \ell n \, 3x + x \left(\frac{1}{3x}(3(1))\right)$$

$$= \left[\ell n \, 3x + 1\right]$$

16. Differentiate cosx mert Janx.

Sol. Let, y = cosx & t = tanxDifferentiate both equations

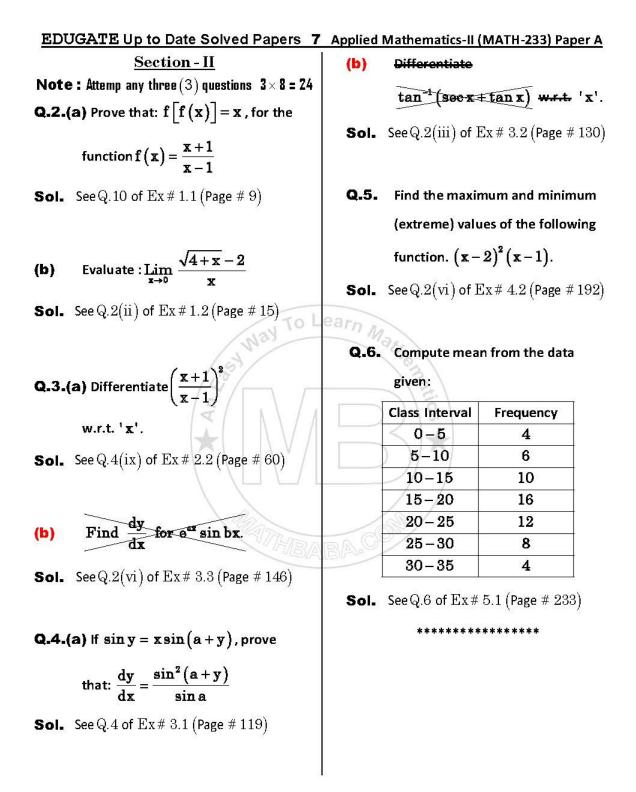
$$\frac{d}{dx}(y) = \frac{d}{dx}(\cos x) \begin{vmatrix} \frac{d}{dx}(t) = \frac{d}{dx}(\tan x) \\ \frac{dy}{dx} = -\sin x \\ \frac{dx}{dt} = \sec^2 x \\ \frac{dx}{dt} = \frac{1}{\sec^2 x} \end{vmatrix}$$

By using Chain's Rule :
$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$

 $\frac{dy}{dt} = (-\sin x) \left(\frac{1}{\sec^2 x}\right) = \boxed{-\sin x \cos^2 x}$
17. Find the critical values (a turning point) for x of the function $2x^4 - x^2$
Sol. Let $y = 2x^4 - x^2$
Differentiate both sides w.r.t. 'x':
 $\frac{d}{dx}(y) = \frac{d}{dx}(2x^4 - x^2)$
 $\frac{dy}{dx} = 2(4x^3) - 2x$
 $\frac{dy}{dx} = 8x^3 - 2x$
For critical values, put $\frac{dy}{dx} = 0$
 $8x^3 - 2x = 0$
 $2x(4x^2 - 1) = 0$
 $2x\left[(2x)^2 - (1)^2\right] = 0$
 $2x(2x - 1)(2x + 1) = 0$
 $2x = 0$
 $2x = 0$
 $2x = 1$
 $\boxed{x = 0}$
 $2x = 1$
 $\boxed{x = \frac{1}{2}}$
 $\boxed{x = -1}$
 $\boxed{x = -\frac{1}{2}}$

- **18.** Find the maximum and minimum (extreme) values of the function $x^2(x-3)$.
- **Sol.** Let $y = x^2(x-3)$

$$y = x^3 - 3x^2 \longrightarrow (i)$$


Differentiate both sides w.r.t. 'x':

$$\frac{d}{dx}(y) = \frac{d}{dx}(x^3 - 3x^2)$$
$$\frac{dy}{dx} = 3x^2 - 3(2x)$$

EDUGATE Up to Date Solved Papers 5 Applied Mathematics-II (MATH-233) Paper A

	$\frac{dy}{dx} = 3x^2 - 6x \rightarrow (ii)$	Sol. The value which divides an arrange data into two equal parts is called Median.		
	For critical values, $put \frac{dy}{dx} = 0$	21. Find standard deviation of the		
	$3x^2 - 6x = 0$	values: 2, 4, 6, 8, 10.		
	3x(x-2) = 0	Sol.		
	3x = 0 x - 2 = 0	x \mathbf{x}^2		
	$\mathbf{x} = 0$ $\mathbf{x} = 2$	$\frac{\mathbf{x} \qquad \mathbf{x}^2}{2} \qquad \mathbf{S.D.} = \sqrt{\frac{\sum \mathbf{x}^2}{n}} - \left(\frac{\sum \mathbf{x}}{n}\right)^2$		
	Differentiate eq. (ii) both sides	$4 16 (220) (30)^2$		
	w.r.t. 'x':	$\frac{1}{6} + \frac{10}{36} = \sqrt{\left(\frac{220}{5}\right) - \left(\frac{30}{5}\right)^2}$		
		$\sigma = \sqrt{44 - 36}$		
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(3x^2 - 6x\right)$	$\nabla x = 30$ $\nabla x^2 = 220$ $\sigma = \sqrt{8} = 2.83$		
	$\frac{d^2y}{dx^2} = 3(2x) - 6(1)$ $\frac{d^2y}{dx^2} = 6x - 6 \rightarrow (iii)$	22. If a die is rolled once, what is the probability of getting a 4?		
	$\frac{d^2y}{dx^2} = 6x - 6 \rightarrow (iii)$	Sol. $S = \{1, 2, 3, 4, 5, 6\}$, $n(S) = 6$		
		Let A be event that getting		
	Put $x = 0$ in eq. (iii) & eq. (i)	number is 4. $A = \{4\}$		
	$\frac{d^2y}{dx^2} = 6(0) - 6 = 0 - 6 = -6 < 0$	$n(A) = 1 \therefore P(A) = \frac{n(A)}{n(S)} = \frac{1}{6}$		
	$y_{max} = (0)^2 (0-3)$	23. If $f(x) = 3x^3 + 2x^2 - x + 4$,		
	y _{max} = 0	prove that: $2f(3) = 25f(1)$		
	Put $x = 2$ in eq.(iii) & eq.(i)	Sol. As, $f(x) = 3(x)^3 + 2(x)^2 - x + 4 \rightarrow (i)$		
	$\frac{d^2y}{dx^2} = 6(2) - 6 = 12 - 6 = 6 > 0$	Put $x = 3$, in eq.(i):		
	ux	$f(3) = 3(3)^3 + 2(3)^2 - 3 + 4$		
	$y_{\min} = (2)^2 (2-3)$	f(3) = 81 + 18 - 3 + 4 = 100		
	$y_{\min} = -4$	Put $x = 1$, in eq.(i):		
19.	Find the mean of the scores	$f(1) = 3(1)^3 + 2(1)^2 - 1 + 4$		
	0, 1, 4, 5, 9, 9.	f(1) = 3 + 2 - 1 + 4 = 8		
Sol.	$Mean = \frac{\sum x}{n} = \frac{0 + 1 + 4 + 5 + 9 + 9}{6}$	2f(3) = 25f(1)		
		2(100) = 25(8)		
	$\bar{\mathbf{x}} = \frac{28}{6} = \frac{14}{3} = \left 4\frac{2}{3} \right $	200 = 200		
		L.H.S. = R.H.S. Proved.		
20.	Define median.	L.		

EDU	GATE Up to Date Solved Papers 6 Appl	d Mathematics-II (MA	TH-233) Paper A
24. If ;	$\mathbf{y} = \sqrt{\tan \mathbf{x} + \sqrt{\tan \mathbf{x} + \sqrt{\tan \mathbf{x} + \dots \infty}}},$	$\frac{d}{dx}(y) = \frac{d}{dx} \left(e^x \ell \right)$	n x)
	prove that: $(2y-1)\frac{dy}{dx} = \sec^2 x$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\mathbf{e}^{x} \right) \ell \mathbf{n} \mathbf{x}$	$x + e^x \frac{d}{dx} (\ell n x)$
Sol.		dv	(1)
As, y =	$=\sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + \dots \infty}}}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{\mathrm{x}}\ell\mathrm{n}\mathrm{x} + \mathrm{e}^{\mathrm{x}}$	$\left(\frac{x}{x}\right)$
E	ng both sides :	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{\mathrm{x}} \left(\ell \mathrm{n} \mathrm{x} + \frac{2}{2} \right)$	$\left(\frac{1}{\kappa}\right)$
$\mathbf{y}^2 = \begin{bmatrix} 1 \end{bmatrix}$	$\left[\tan x + \sqrt{\tan x + \sqrt{\tan x + \dots \infty}}\right] \qquad \boxed{2}$		10 K K K K K K K K K K K K K K K K K K K
$v^2 = ta$	$\ln x + \sqrt{\tan x + \sqrt{\tan x + \dots \infty}}$	point in t seconds	
		$\mathbf{x} = \mathbf{t}^3 + 3\mathbf{t}^2 + 4.$	
\mathbf{y}^2	$= \tan x + y \begin{cases} \because \text{ Given that} \\ y = \sqrt{\tan x} + \sqrt{\tan x} + \sqrt{\tan x} + \dots \infty \end{cases}$	and acceleration a	
	y=\tanx+\tanx+\tanx+	• As, $x = t^3 + 3t^2 -$	+4
	$y^2 - y = tan x$ Differentiate both sides w.r.t, 'x':	$\mathbf{v} = \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{t}} = \frac{\mathrm{d}}{\mathrm{d}\mathbf{t}} \left(\mathbf{t}^{3} + \right)$	$3t^2 + 4$
		$v = 3t^{2} + 3(2t) +$	
	$\frac{d}{dx}(y^2 - y) = \frac{d}{dx}(\tan x)$	$\mathbf{v} = 3\mathbf{t}^2 + 6\mathbf{t} \rightarrow (\mathbf{i}$	
	$2y\frac{dy}{dx} - \frac{dy}{dx} = \sec^2 x$	Differentiate eq.(i)both
		sides w.r.t. 'x':	
	$(2y-1)\frac{dy}{dx} = \sec^2 x$ Proved.	$a = \frac{dv}{dt} = \frac{d}{dt} (3t^2 + t)$	+6t)
25.	Differentiate $(x^2 + 3x + 9)^{3/2}$	$\mathbf{a} = 3(2\mathbf{t}) + 6(1)$	
	w.r.t. 'x'.	$a = 6t + 6 \rightarrow (ii)$	
Sol.	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\left(x^2+3x+9\right)^{3/2}\right)$	Velocity after 3 seco Put t = 3 in eq.(
$=\frac{3}{2}$	$(x^{2}+3x+9)^{\frac{3}{2}-1}$ $(\frac{d}{dx}(x^{2}+3x+9))$	$v = 3\left(3\right)^2 + 6\left(3\right)$	
2		v = 27 + 18	
$=\frac{3}{2}(\mathbf{x}^2)$	$x^{2} + 3x + 9 \Big)^{\frac{1}{2}} (2x + 3(1) + 0)$	v = 45 m / s	
$=\left \frac{3}{2}\right \mathbf{x}$	$(2^{2}+3x+9)^{\frac{1}{2}}(2x+3)$	<u>Acceleration after 3</u> Put t=3 in eq.(
		$\mathbf{v} = 6(3) + 6$	
26.	Find $dy = e^x \ell n x$	v = 18 + 6	
	dx	$a = 24 \text{ m} / \text{s}^2$	
Sol.	Let, $y = e^x \ell n x$		
	Differentiate both sides w.r.t. 'x':		

