EDUGATE Up to Date Solved Papers 28 Applied Mathematics-II (MATH-233) Paper A

DAE/IA-2018

MATH-233 APPLIED MATHEMATICS-II

PAPER 'A' PART - A (OBJECTIVE)

Time: 30 Minutes

Marks:15

Q.1: Encircle the correct answer.

- Given $f(x) = \frac{1}{x} 1$ then f(2) = ?
 - [a] 1 [b] 2 [c] $-\frac{1}{2}$ [d] 3
- $\lim_{x\to 0} 1 + x = ?$ 2.
 - [a] ()
- [b] 1
- [c] e
- 3.
 - [a] 0
- [c] $\frac{2}{}$ [d] ∞
- Second derivative of x2 is:
 - [a] 2
- [b] 2x
- [c] zero
- [d] $2x^2$
- If $\mathbf{u} = \mathbf{t}^2 3$ then $\frac{\mathbf{d}\mathbf{u}}{\mathbf{d}\mathbf{t}} = ?$ 5.
 - [a] 2t
- [b] 2t 3
- [c] ${
 m t}^{-2}$
- [d] $2\mathrm{t}^{-2}$
- If $y = \frac{x+1}{y^2}$, then $\frac{dy}{dx} =$ 6.
 - [a] $\frac{x+1}{x^2}$ [b] $\frac{2}{x^2}$
 - [c] $-\frac{1}{x^2}$ [d] $\frac{x^2-1}{x^2}$
- $\frac{d}{dx}(2\cos 3x) = ?$ 7.
 - [a] $6\sin 3x$ [b] $-6\sin 3x$
 - [c] $-6\cos 3x$ [d] $6\cos 3x$
- $\frac{d}{dv}$ sin =?

- [a] $\frac{1}{\sqrt{1-v^2}}$ [b] $\frac{-1}{v\sqrt{v^2-1}}$
- [c] $\frac{1}{\sqrt{x^2-1}}$ [d] $\frac{-1}{\sqrt{x^2-1}}$
- $\frac{d}{dx}(ln\sin x) =$ 9.

 - [a] $\cot x$ [b] $\frac{1}{\sin x} \ell n \sin x$
 - [c] $\ell n \cos x$ [d] $\tan x$
- For a decreasing function $\frac{dy}{dx}$ is: 10.

- [b] -ve[c] -zero[d] None of these

 The function $f(x) = x^2$ between $-5 \le x \le -4$ is:

 - [c] Maximum [d] Minimum
 - $\frac{d}{dx}(a^x) = ?$
 - [a] $a^{x} \ell n a$ [b] xa^{x-1}
 - $[c] a^{x-1}$
- When n is odd the $\left(\frac{n+1}{2}\right)^{th}$ value 13.

is called:

- [a] Mean
- [b] Mode
- [c] Median
- [d] Harmonic Mean
- 14. Arithmetic mean of the values 4.5, 7.5, 4.5, 2.4, 4.5 is:
 - [a] 4.5 [b] 4.7 [c] 7.5 [d] 4.6
- 15. The mode of
 - 2, 3, 3, 4, 4, 4, 8, 9, 10 is:
 - [a] 3 [b] 8 [c] 9 [d] 4Answer Key
- d 2 d C 5 C 7 6 b 8 9 10 \mathbf{a} 11 \mathbf{d}

EDUGATE Up to Date Solved Papers 29 Applied Mathematics-II (MATH-233) Paper A

DAE/IA-2018

MATH-233 APPLIED MATHEMATICS-II

PAPER 'B' PART - B (SUBJECTIVE)

Time:2:30Hrs

Marks:60

Section - I

- Q.1. Write short answers to any Eighteen (18) questions.
- 1. Is the following function even, odd or neither: $f(x) = 4x^3 - 2x + 6$

Sol. As,
$$f(x) = 4x^3 - 2x + 6$$

Replace x by -x, we have:

$$f(-x) = 4(-x)^3 - 2(-x) + 6$$

$$f(-x) = -4x^3 + 2x + 6$$

$$f\left(-x\right) = -\left(4x^3 - 2x - 6\right)$$

$$f(-x) \neq -f(x)$$

Hence f(x) is **neither** even nor odd function.

Evaluate: $\lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x}$ 2.

Sol.
$$\lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ form}$$

$$= \lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}}$$

$$= \lim_{x \to a} \frac{\left(\sqrt{x}\right)^2 - \left(\sqrt{a}\right)^2}{(x - a)\left(\sqrt{x} + \sqrt{a}\right)}$$

$$= \lim_{x \to a} \frac{(x - a)}{(x - a)(\sqrt{x} + \sqrt{a})}$$

$$= \lim_{x \to a} \frac{1}{\sqrt{x} + \sqrt{a}} = \frac{1}{\sqrt{a} + \sqrt{a}} = \boxed{\frac{1}{2\sqrt{a}}}$$

- Evaluate: $\lim_{x\to 0} \frac{\tan x}{x}$ 4.
- $\lim_{x\to 0} \frac{\tan x}{x} \left(\frac{0}{0}\right)$ form Sol.

$$= \lim_{x \to 0} \frac{\sin x}{x \cdot \cos x}$$

$$= \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x}$$

$$= (1) \cdot \frac{1}{\cos 0} = \frac{1}{1} = \boxed{1}$$

- Find $\lim_{x\to 0} 1 + \frac{x}{2} \Big|_{x}$
- Sol. $\lim_{x\to 0} \left(1+\frac{x}{2}\right)^{1/x}$ $= \lim_{x \to 0} \left(1 + \frac{x}{3} \right)^{\frac{3}{x} \times \frac{1}{3}}$

$$f(-x) = 4(-x) - 2(-x) + 6$$

$$f(-x) = -4x^3 + 2x + 6$$

$$f(-x) = -\left(4x^3 - 2x - 6\right)$$

$$f(-x) \neq -f(x)$$

$$= \lim_{x \to 0} \left(1 + \frac{x}{3}\right)^{\frac{1}{3}} = e^{\frac{1}{3}}$$

Differentiate x^3 w.r.t. x by ab-initio.

Sol. Let,
$$y = x^3 \rightarrow (i)$$

Step-I: then
$$y + \delta y = (x + \delta x)^3 \rightarrow (ii)$$

Step-II: Subtracting eq.(i) from eq.(ii), we have:

$$y+\delta y-y=\left(\,x+\delta x\,\right)^{\!3}-x^{\,3}$$

$$\delta y = x^3 + 3x^2\delta x + 3x\delta x^2 + \delta x^3 - x^3$$

$$\delta y = 3x^2 \delta x + 3x \delta x^2 + \delta x^3$$

$$\delta y = \delta x \left(3x^2 + 3x\delta x + \delta x^2 \right)$$

Step-III: Dividing both sides by $\delta x'$:

$$\frac{\delta y}{\delta x} = 3x^2 + 3x\delta x + \delta x^2$$

Step-IV: Taking limit $\delta x \rightarrow 0$ on both sides:

$$\underset{\delta x \rightarrow 0}{Lim} \ \frac{\delta y}{\delta x} = \underset{\delta x \rightarrow 0}{Lim} \ \left(3x^2 + 3x\delta x + \delta x^2\right)$$

$$\frac{dy}{dx} = 3x^2 + 3x(0) + (0)^2$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 0 + 0 = \boxed{3x^2}$$

EDUGATE Up to Date Solved Papers 30 Applied Mathematics-II (MATH-233) Paper A

$$(3-x^2)(x^3-x+1)$$
 w.r.t. 'x'.

$$\textbf{Sol.} \quad \frac{d}{dx} \Big[\Big(3 - x^2 \Big) \Big(x^3 - x + 1 \Big) \Big]$$

{using Product Rule}

$$\begin{split} &= \left(\frac{d}{dx} \left(3 - x^2\right)\right) \! \left(x^3 - x + 1\right) + \left(3 - x^2\right) \! \left(\frac{d}{dx} \left(x^3 - x + 1\right)\right) \\ &= \left(0 - 2x\right) \! \left(x^3 - x + 1\right) + \left(3 - x^2\right) \! \left(3x^2 - 1 + 0\right) \\ &= \left(-2x\right) \! \left(x^3 - x + 1\right) + \left(3 - x^2\right) \! \left(3x^2 - 1\right) \\ &= -2x^4 + 2x^2 - 2x + 9x^2 - 3 - 3x^4 + x^2 \\ &= \overline{\left[-5x^4 + 12x^2 - 2x - 3\right]} \end{split}$$

7. Find
$$\frac{dy}{dx}$$
 if $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Sol. Differentiate both sides w.r.t. 'x':

$$\frac{d}{dx} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right) = \frac{d}{dx} (1)$$

$$\frac{2x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0$$

$$\frac{2y}{b^2} \frac{dy}{dx} = -\frac{2x}{a^2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2x}{a^2} \cdot \frac{b^2}{2y} \implies \boxed{\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{b^2x}{a^2y}}$$

8. If
$$y = 5x^3 - 7x^2 + 9 - \frac{8}{x} + \frac{7}{x^4}$$
, find $\frac{dy}{dx}$

Sol.
$$y = 5x^3 - 7x^2 + 9 - \frac{8}{x} + \frac{7}{x^4}$$

Differentiate both sides w.r.t. 'x':

$$\frac{d}{dx}(y) = \frac{d}{dx} \left(5x^3 - 7x^2 + 9 - \frac{8}{x} + \frac{7}{x^4}\right)$$

$$\frac{dy}{dx} = \frac{d}{dx} \left(5x^3 - 7x^2 + 9 - 8x^{-1} + 7x^{-4}\right)$$

$$\frac{dy}{dx} = 5(3x^2) - 7(2x) + 0 - 8(-1)x^{-2} + 7(-4)x^{-5}$$

$$\frac{dy}{dx} = 15x^2 - 14x + \frac{8}{x^2} - \frac{28}{x^5}$$

9. If
$$y = \frac{x^2 + 1}{x - 1}$$
, find $\frac{dy}{dx}$ at $x = 2$.

Sol.
$$y = \frac{x^2 + 1}{x - 1}$$

Differentiate both sides w.r.t. 'x':

$$\frac{d}{dx} \Big(y \Big) = \frac{d}{dx} \Bigg(\frac{x^2 + 1}{x - 1} \Bigg) \Big\{ \underset{\text{Quotient Rule}}{\text{using by}} \Big\}$$

$$\frac{dy}{dx} = \frac{\left(x-1\right)\!\left(\frac{d}{dx}\!\left(x^2+1\right)\right)\!-\!\left(x^2+1\right)\!\left(\frac{d}{dx}\!\left(x-1\right)\right)}{\left(x-1\right)^2}$$

$$\frac{dy}{dx} = \frac{(x-1)(2x+0) - (x^2+1)(1-0)}{(x-1)^2}$$

$$\frac{dy}{dx} = \frac{2x^2 - 2x - x^2 - 1}{(x - 1)^2}$$

$$\frac{dy}{dx} = \frac{x^2 - 2x - 1}{\left(x - 1\right)^2}$$

At
$$x = 2$$

$$\frac{dy}{dx} = \frac{(2)^2 - 2(2) - 1}{(2 - 1)^2} = \frac{4 - 4 - 1}{(1)^2} = \boxed{-1}$$

10. Differentiate $\sin(\tan x)$ w.r.t. 'x'.

Sol.
$$\frac{d}{dx} \left[\sin(\tan x) \right]$$
$$= \cos(\tan x) \cdot \left(\frac{d}{dx} (\tan x) \right)$$
$$= \cos(\tan x) \sec^2 x$$

11. Find the derivative of
$$\sin^{-1}\left(\frac{x}{a}\right)$$

Sol.
$$\frac{d}{dx} \left(\sin^{-1} \left(\frac{x}{a} \right) \right)$$
$$= \frac{1}{\sqrt{1 - \left(\frac{x}{a} \right)^2}} \cdot \frac{d}{dx} \left(\frac{x}{a} \right)$$

EDUGATE Up to Date Solved Papers 31 Applied Mathematics-II (MATH-233) Paper A

$$\begin{split} &= \frac{1}{\sqrt{1 - \frac{x^2}{a^2}}} \times \left(\frac{1}{a}\right) = \frac{1}{\sqrt{\frac{a^2 - x^2}{a^2}}} \cdot \frac{1}{a} \\ &= \frac{1}{\sqrt{a^2 - x^2}} \cdot \frac{1}{a} = \boxed{\frac{1}{\sqrt{a^2 - x^2}}} \end{split}$$

12. Find the value of $\frac{d}{dx}$

Sol. Let
$$y = x^x$$

Taking ' ℓ n' on both sides:

$$\ell n(y) = \ell n(x^x)$$

$$\ell\,n\left(y\right) = x\left(\ell\,n\,x\right) \begin{cases} \text{using logrithm law} \\ \ell\,n\left(m^n\right) = n\,\,\ell\,n(m) \end{cases}$$

$$\frac{d}{dx}(\ell\,n\,y) = \frac{d}{dx}\Big(x\Big(\ell\,n\,x\Big)\Big)\Big\{ \underset{\text{Product Rule}}{\text{using by}} \Big\}$$

$$\frac{1}{y} \frac{dy}{dx} = \left(\frac{d}{dx}(x)\right) \ell n x + x \left(\frac{d}{dx}(\ell n x)\right)$$

$$\frac{dy}{dx} = y \left[\left(1 \right) \ell \, n \, x + x \left(\frac{1}{x} \right) \right]$$

$$\frac{dy}{dx} = x^{x} \left[\ell \, n \, x + 1 \right] \!\! \Rightarrow \!\! \frac{dy}{dx} = \left[\!\! x^{x} \left[1 + \ell \, n \, x \right] \!\! \right]$$

13. Differentiate $\frac{x}{\ell nx}$ w.r.t. 'x'.

Sol.
$$\frac{d}{dx} \left(\frac{x}{\ell n x} \right) \{ \text{using Quotient Rule} \}$$

$$=\frac{\ell \, n \, x. \left(\frac{d}{dx}(x)\right) - x \left(\frac{d}{dx}(\ell \, n \, x)\right)}{\left(l \, n \, x\right)^2}$$

$$=\frac{\ell \, n \, x.(1) - x \left(\frac{1}{x}\right)}{\left(\ell \, n \, x\right)^2} \!=\! \left[\!\frac{\ell \, n \, x - 1}{\left(\ell \, n \, x\right)^2}\right]$$

14. Find
$$\frac{dy}{dx}$$
 for $e^{\sqrt{x+1}}$

Sol. Let
$$y = e^{\sqrt{x+1}}$$

Differentiate both sides w.r.t. 'x':

$$\frac{d}{dx} \Big(y \, \Big) = \frac{d}{dx} \Big(e^{\sqrt{x+1}} \, \Big)$$

$$\frac{dy}{dx} = e^{\sqrt{x+1}} \cdot \left(\frac{d}{dx} \left(\sqrt{x+1} \right) \right)$$

$$\frac{dy}{dx} = e^{\sqrt{x+1}} \cdot \frac{1}{2} \left(x+1\right)^{-1/2} \left(\frac{d}{dx} \left(x+1\right)\right)$$

$$\frac{dy}{dx} = e^{\sqrt{x+1}} \cdot \frac{1}{2\sqrt{x+1}} \left(1+0\right)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^{\sqrt{x+1}}}{2\sqrt{x+1}}$$

15. Differentiate sin⁻¹ x w.r.t. cos⁻¹ x.

Sol. Let, $y = \sin^{-1} x$ and $t = \cos^{-1} x$

$$\frac{d}{dx}(y) = \frac{d}{dx}(\sin^{-1}x) \begin{vmatrix} \frac{d}{dx}(t) = \frac{d}{dx}(\cos^{-1}x) \\ \frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}} \end{vmatrix}$$

$$\frac{dx}{dt} = -\sqrt{1-x^2}$$

By using Chain's Rule: $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$

$$\frac{\mathrm{dy}}{\mathrm{dt}} = \frac{1}{\sqrt{1-x^2}} \cdot \left(-\sqrt{1-x^2}\right) = \boxed{-1}$$

16. Find
$$\frac{dy}{dx}$$
 if $x = a\theta^3$, $y = b \left(\theta - \frac{1}{\theta}\right)$

Sol. Differentiate both sides w.r.t. $^{1}\theta^{1}$:

$$\frac{d}{d\theta}(x) = \frac{d}{d\theta}(a\theta^3) \quad \frac{d}{d\theta}(y) = \frac{d}{d\theta}\left(b\left(\theta - \frac{1}{\theta}\right)\right)$$

$$\frac{dx}{d\theta} = a\left(3\theta^2\right) \qquad \frac{dy}{d\theta} = b\left(1 - \left(-1\right)\theta^{-2}\right)$$

$$\frac{dx}{d\theta} = 3a\theta^2 \qquad \frac{dy}{d\theta} = b\left(1 + \frac{1}{\theta^2}\right)$$

$$\frac{d\theta}{dx} = \frac{1}{3a\theta^2} \qquad \qquad \frac{dy}{d\theta} = b\left(\frac{\theta^2 + 1}{\theta^2}\right)$$

EDUGATE Up to Date Solved Papers 32 Applied Mathematics-II (MATH-233) Paper A

using chain rule:
$$\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$$

$$\frac{dy}{dx} = b \left(\frac{\theta^2 + 1}{\theta^2} \right) \left(\frac{1}{3a\theta^2} \right) \Rightarrow \boxed{\frac{dy}{dx} = \frac{b}{3a} \left(\frac{\theta^2 + 1}{\theta^4} \right)}$$

17. Find the derivative w.r.t. 'x' of $x\sqrt{x+1}$

Sol.
$$\frac{d}{dx} \left(x \sqrt{x+1} \right) \left\{ \text{using Product Rule} \right\}$$

$$= \left(\frac{d}{dx} \left(x \right) \right) \sqrt{x+1} + x \left(\frac{d}{dx} \left(\sqrt{x+1} \right) \right)$$

$$= 1.\sqrt{x+1} + x. \frac{1}{2} \left(x+1 \right)^{-1/2} \left(\frac{d}{dx} \left(x+1 \right) \right)$$

$$= \sqrt{x+1} + \frac{x}{2\sqrt{x+1}} (1+0)$$

$$= \sqrt{x+1} + \frac{x}{2\sqrt{x+1}}$$

$$= \frac{2\left(\sqrt{x+1} \right)^2 + x}{2\sqrt{x+1}}$$

$$= \frac{2(x+1) + x}{2\sqrt{x+1}}$$

$$= \sqrt{x+1} + \frac{x}{2\sqrt{x+1}}$$

$$= \frac{2\left(\sqrt{x+1}\right)^2 + x}{2\sqrt{x+1}}$$
$$= \frac{2\left(x+1\right) + x}{2\sqrt{x+1}}$$

$$=\frac{2x+2+x}{2\sqrt{x+1}} = \boxed{\frac{3x+2}{2\sqrt{x+1}}}$$

18. Calculate the limit $\lim_{x \to \infty} \frac{x^2 + 1}{2x^3 - x}$

Sol.
$$\lim_{x\to\infty} \frac{x^2+1}{2x^3-x} \left(\frac{\infty}{\infty}\right)$$
 form

Dividing numerator & Denominator by x³

$$= \lim_{x \to \infty} \frac{\frac{x^2}{x^3} + \frac{1}{x^3}}{2\frac{x^3}{x^3} - \frac{x}{x^3}} = \lim_{x \to \infty} \frac{\frac{1}{x} + \frac{1}{x^3}}{2 - \frac{1}{x^2}}$$

$$=\frac{\frac{1}{\infty} + \frac{1}{\infty^3}}{2 - \frac{1}{\infty^2}} = \frac{0 + 0}{2 - 0} = \frac{0}{2} = \boxed{0}$$

- 19. Find the slope of the tangent to the curve $y = \sin 2x$ at $x = \frac{\pi}{2}$
- Sol. $y = \sin 2x$

$$\frac{d}{dx}(y) = \frac{d}{dx}(\sin 2x)$$

$$\frac{dy}{dx} = 2\cos 2\left(\frac{\pi}{6}\right)$$

$$\frac{dy}{dx} = 2\cos 2x$$

$$\frac{dy}{dx} = 2\cos 2x$$

$$\frac{dy}{dx} = 2\cos 2x$$

$$\frac{dy}{dx} = 2\left(\frac{1}{2}\right)$$

$$\frac{dy}{dx} = \boxed{1}$$

20. Find the turning points of the curve $\mathbf{v} = 2\mathbf{x}^3 - 15\mathbf{x}^2 + 36\mathbf{x} + 10$

Sol.
$$y = 2x^3 - 15x^2 + 36x + 10$$

Differentiate both sides w.r.t. 'x':

$$\frac{d}{dx}(y) = \frac{d}{dx}(2x^3 - 15x^2 + 36x + 10)$$

$$\frac{dy}{dx} = 2(3x^2) - 15(2x) + 36(1) + 0$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = 6x^2 - 30x + 36$$

For turning point, put $\frac{dy}{dx} = 0$

$$6x^2 - 30x + 36 = 0$$

Dividing each term on '6'

$$x^2 - 5x + 6 = 0$$

$$x^2 - 3x - 2x + 6 = 0$$

$$x(x-3)-2(x-3)=0$$

$$(x-3)(x-2)=0$$

Either OR

$$x - 3 = 0$$

$$x - 2 = 0$$

$$x = 3$$

$$x = 2$$

- 21. If s = log t, find the velocity and acceleration at $t = 3 \sec$.
- Sol. $s = \log t$

Differentiate both sides w.r.t. 't':

$$\frac{\mathrm{d}}{\mathrm{d}t} \big(s \big) \! = \! \frac{\mathrm{d}}{\mathrm{d}t} \big(\log t \big)$$

$$v = \frac{1}{t} \rightarrow (i)$$

Differentiate both sides w.r.t. 't':

$$\frac{d}{dt} \Big(v \Big) = dt \bigg(\frac{1}{t} \bigg)$$

$$a = -\frac{1}{t^2} \rightarrow (ii)$$

Put t = 3 in eq.(i) & eq(ii)

$$v = \frac{1}{3} m_s$$

$$\mathbf{a} = -\frac{1}{\left(3\right)^2}$$

$$a = \boxed{\frac{-1}{9} \text{m/sec}^2}$$

- 22. If mode = 15, Median = 12 find
- mean. Mode = 15

Sol. As,
$$Mode = 15$$

$$3$$
Median -2 Mean $=15$

$$3(12) - 2Mean = 15$$

$$-2$$
Mean = $15 - 36$

$$-2$$
Mean = -21

Mean =
$$\frac{-21}{2}$$

$$Mean = \boxed{10.5}$$

23. Find standard deviation of the values: 2, 4, 6, 8, 10.

Sol.

$\sum x = 30$	$\sum x^2 = 220$	$\sigma = \sqrt{8} = \boxed{2.83}$
10	100	$\sigma = \sqrt{44-36}$
8	64	1 2 2 2 2
6	36	$\sigma = \sqrt{\left(\frac{220}{5}\right) - \left(\frac{30}{5}\right)^2}$
4	16	(220) (20)2
2	4	$S.D. = \sqrt{\frac{2 A}{n}} - \left(\frac{2 A}{n}\right)$
X	\mathbf{x}^2	$\sum x^2 (\sum x)^2$

24. Write formula to find the mode of a grouped frequency distribution.

$$\textbf{Sol.} \quad Mode = \ell + \frac{\left(f_m - f\right)_1}{\left(f_m - f_1\right) + \left(f_m - f_2\right)} \times h$$

- 25. A fair coin is tossed twice what is the probability that we get at least on head.
- $S = \{HH, HT, TH, TT\}, n(S) = 4$ Sol. Let A be event that at least one head appears.

$$A = \{HH, HT, TH\} \Rightarrow n(A) = 4$$

$$\therefore P(A) = \frac{n(A)}{n(S)} = \boxed{\frac{3}{4}}$$

- 26. If a die is rolled once, what is the probability of getting a 4?
- $S = \{1, 2, 3, 4, 5, 6\}, n(S) = 6$ Sol. Let A be event that getting number is 4. $A = \{4\}$

$$n(A) = 1 : P(A) = \frac{n(A)}{n(S)} = \boxed{\frac{1}{6}}$$

- 27. Write down the formula to find the probability of two not mutually exclusive events.
- Sol. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

EDUGATE Up to Date Solved Papers 34 Applied Mathematics-II (MATH-233) Paper A

Section - II

Note: Attemp any three (3) questions $3 \times 8 = 24$

Q.2.(a) Prove that:
$$f[f(x)] = x$$
, for the

function
$$f(x) = \frac{x+1}{x-1}$$

Sol. See Q.10 of Ex # 1.1 (Page # 9)

Sol. See Q.1(xii) of Ex # 1.3 (Page # 28)

Q.3.(a) Differentiate

a) Differentiate
$$\frac{x}{(a^2 + x^2)^{\frac{3}{2}}} \text{ w.r.t. 'x'}.$$

Sol. See Q.4(xiii) of Ex # 2.2 (Page # 60)

(b) Find
$$\frac{dy}{dx}$$
 if $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$

Sol. See Q.3(vii) of Ex # 2.3 (Page # 78)

Q.4.(a) Find the derivative w.r.t x

$$\sqrt{\frac{1-\cos x}{1+\cos x}}$$

Sol. See Q.3(viii) of Ex#3.1 (Page #117)

(b) Differentiate
$$\tan^{-1}\left(\frac{x-1}{x+1}\right)$$

Sol. See Q.2(ii) of Ex # 3.2 (Page # 129)

Q.5.(a) If
$$y = \cos x + \ell n \tan \frac{x}{2}$$
, Find $\frac{dy}{dx}$

Sol. See Q.1(xi) of Ex # 3.3 (Page # 143)

(b) Discuss for the relative maxima and minima $y = x + \frac{1}{x}$

Sol. See Q.3(iv) of Ex# 4.2 (Page # 202)

Q.6.(a) Calculate the standard deviation

from the following data:

Size Item	Frequency	
2	9	
3	6	
4	2	
3 5	2	
) \ 66	2	
7	4	
)/ 8/	3	
/ 9	3	
10	2	
11	3	

Sol. See Q.6 of Ex# 5.2 (Page # 243)

Two fair dice are rolled. Find the (b) probability that the sum is 6 or 8.

See Q.1 of Ex# 6.2 (Page # 265) Sol. *******

Available online @ https://mathbaba.com