SECOND YEAR DAE/IIA - 2019/02

(Common with Architecture, Automation, Auto-Mobile & Diesel, Auto & Farm Machinery, Civil, Cast Metal & Foundry, Foundry & Pattern Making, Land & Mine Surveying, Mechanical, Mining, Mechatronics, Metallurgy & Welding, Q. Surveying, Construction Machinery and Footwear Technologies)

MATH-212 APPLIED MATHEMATICS - II PART-B

Time: 2:30 hours

Marks: 80

	SECTION -1			
ant anamana to	Tanarate	Fine (OF) of the Callendin		

ng questions:- $25 \times 2 = 50$
Sin $x + Cos x$, Show that f(x) = -f(x)
$3 x^3 + 2 x^2 - x + 4$, prove that
25 f(1)
$\frac{1}{(ax+b)^m}$
$x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$, Then show that
2: 3: 4:
value of $\frac{d}{dx} (\sin^{-1}x + \cos^{-1}x)$
value of $\frac{d}{dx} (\cos^{-1} (1 - 2x^2))$
, find y ₂
mx +Be ^{-mx} , show that = 0
$\frac{1}{(3x+4)^2} dx$
$+\frac{1}{t^2}-2$) dt
alue of $\int \frac{\sin^{-1}x}{\sqrt{1-x^2}} dx$
alue of $\int \frac{x-1}{x^2-2x+3} dx$
$\frac{\tau}{6}$ 2 sin 2x dx
τ/6
$\int_{0}^{\infty} \sec^{2}x dx$
ance between the points (-3, 1) and
co-ordinate of the mid point of the $P_1(3,7)$, $P_2(-2,3)$.
quation of circle with centre on
I radius is $\frac{1}{2}$.
entre and radius of the circle - 18 y = 0

SECTION - II

NOTE: ATTEMPT ANY THREE QUESTIONS.

 $3 \times 10 = 30$

Q.2 (a) If
$$f(x) = \frac{x-1}{x+1}$$
, show that $\frac{f(x) - f(y)}{1 + f(x) f(y)} = \frac{x-y}{1 + xy}$.

- (b) Differentiate $x^{\frac{2}{3}}$ by ab-initio method.
- Q.3 (a) Differentiate Cos2x from first principle method.
 - (b) Use differentials to find the approximate value of $\sqrt{65}$
- Q.4 (a) Evaluate $\int \frac{1}{\sqrt{1+x} \sqrt{x}} dx$
 - (b) Evaluate $\int \frac{dx}{\sqrt{a^2-x^2}}$
- Q.5 (a) Calculate the Integral $\int_{0}^{3} \sqrt[3]{(3x-1)^2} dx$
 - (b) Find which of the two circles $x^2 + y^2 3x + 4y = 0$ and $x^2 + y^2 6x 8y = 0$ is greater.
- Q.6 (a) If a line ℓ_1 contains P (2, 6) and (0, y). Find y if ℓ_1 is parallel to ℓ_2 and that the Slope of $\ell_2 = \frac{3}{4}$
 - (b) Find an equation of the line which is perpendicular to the line 4x + 7y = 5 and passes through (-1, 2).