COMMON WITH BIO MEDICAL, COMPUTER, COMPUTER INFORMATION, ELECTRICAL, ELECTRONICS, FOOD, FOOD PROCESSING & PRESERVATION, INFORMATION & COMMUNICATION, INSTRUMENT, INSTRUMENTATION, MECHATRONICS AND TELECOMMUNICATION TECHNOLOGIES.

MATH.123 APPLIED MATHEMATICS-I

PAPER 'A' (Subjective)

Time: 2:30 Hours

SECTION-I

Write short answers to any Eighteen (18) questions. 0.1

18x2=36

Marks: 60

- Solve the quadratic equation $3x^2 + 5x = 2$ by factorization.
- Solve the equation $x^2 2x 899 = 0$ by completing the square. 2.
- Discuss the nature of the roots of the equation $9x^2 + 6x + 1 = 0$. 3.
- Find the value of K if the sum of the roots of the equation. 4.

$$(2k-1)x^2 + (4k-1)x + (K+3) = 0$$
 is 5/2

- For what value of k the sum of roots of equation $3x^2 + kx + 5 = 0$ may be equal to 5. the product of roots.
- Expand $\left(\frac{x}{y} + \frac{y}{y}\right)^4$ by Binomial theorem. 6.
- Calculate (1.02)10 by Binomial Theorem up to two decimal places. 7.
- Find the 6th term in the expansion of $(x + 3y)^{10}$ 9. Expand $\frac{1}{\sqrt{1+x}}$ to three terms.
- Using the Binomial series, calculate $\sqrt{80}$ to the nearest hundredth. 10.
- Convert $\frac{2\pi}{3}$ radians into degree measure. 11.
- Prove that $2 \sin 45^{\circ} + \frac{1}{2} \csc 45^{\circ} = \frac{3}{\sqrt{0}}$
- Prove that Cos 30° Cos 60° sin 30° sin 60° =0 13.
- Prove that $\frac{1}{1 + \sin \theta} + \frac{1}{1 \sin \theta} = 2 \sec 2\theta$
- 15. Prove that $\cos\left(\frac{1}{2} \beta\right) = \sin \beta$
- Show that $Cos(\alpha + \beta) Cos(\alpha \beta) = -2 Sin\alpha Sin \beta$
- Prove that $\sin \alpha = 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}$
- $\cos \theta$ if $\sin \theta = \frac{7}{25}$ and angle θ is an acute angle. 18.
- Define the law of sine. 19.
- In any triangle ABC if a =20, c = 32 and c =70°, Find A. 20.
- The shadow of Outab Minar is 81m long when the measure of the angel of elevation of the 21. sun is 41° 31'. Find the height of the Outab Minar.
- In any triangle ABC if b =25, c =37, A =65°, Find a. 22.
- Find α , so that $|\alpha i+(\alpha+1)j+2k|=3$ 23.
- 24. Define Vector product.
- Under what conditions does the relation $\bar{a} \cdot \bar{b} = |\bar{a}| |\bar{b}|$ holds for two vectos \bar{a} and \bar{b} 25.
- Express $\sqrt{2} \angle 45^{\circ}$ in Rectangular forms, i.e. a + j b26.
- Find the product of $Z_1 = 2\angle 15^0$, $Z_2 = -1\angle 30^0$ 27.

SECTION-II

Note: Attempt any three (03) questions.

3x8 = 24

Q.2 (a) Solve the equation $x^2 + (m-n)x - 2(m-n)^2 = 0$ by using quadratic formula.

The roots of the equation $px^2 + qx + q = 0$ are α and β ,

Prove that $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{q}{p}} = 0$

Q.3 (a) Find the term involving q^8 in the expansion of $\left(\frac{p^2}{2} + 6q^2\right)^{12}$

(b) Find the coefficient of x^5 in the expansion of $\frac{(1+x)^2}{(1-x)^2}$

Q.4 (a) If $\sin \theta = \frac{2}{3}$, and the terminal side of the angle lies in the second quadrant, find the remaining trigonometric ratios of θ .

(b) Prove that $\frac{1 + \tan^2 \theta}{1 + \cot^2 \theta} = \frac{(1 - \tan \theta)^2}{(1 - \cot \theta)^2}$

Q.5 (a) Prove that $\sin^4 \theta = \frac{3}{8} - \frac{1}{2} \cos 2\theta + \frac{1}{8} \cos 4\theta$

(b) A television antenna is on the roof of a building. From a point on the ground 36m from the building, the angle of elevation of the top and the bottom of the antenna are 51° and 42° respectively. How tall is the antenna?

Q.6 (a) Using cross product, find the area of triangle whose vertices are (0, 0, 0), (1, 1, 1), (0, 0, 3)

(b) Simplify $(\sqrt{3} + j)^7$ and express the result in a + jb form.
