DAE/IIA-2017/09 FIRST YEAR

COMMON WITH BIO MEDICAL, COMPUTER,

COMPUTER INFORMATION, ELECTRICAL, ELECTRONICS, FOOD,

FOOD PROCESSING & PRESERVATION, INFORMATION & COMMUNICATION,

INSTRUMENT, INSTRUMENTATION, MECHATRONICS AND

TELECOMMUNICATION TECHNOLOGIES.

MATH.123 APPLIED MATHEMATICS-I PAPER 'A' (Subjective)

SECTION-I

Time: 2:30 Hours

Q.1

Marks: 60

Write short answers to any Eighteen (18) questions.

18x2 = 36

- Solve the equation $x^2 3x = 2x 6$ by factorization
- 2. Solve the quadratic equation $x^2 + 7x + 12 = 0$
- 3. Find the value of K given that the sum of the roots of the equation.

 $3x^2 + kx + 5 = 0$ will be equal to the product of its roots.

- Form the quadratic equation whose roots are 3 + i, 3 i
- 5. Find the sum and product of the roots of $x^2 9 = 0$
- Expand $\left(x + \frac{1}{x}\right)^4$ by Binomial theorem.
- Find the 5th term in the expansion of $(2x \frac{x^2}{4})^{7}$.
- Expand $(1+x)^{-3}$ up to three terms.
- 9. Compute (1.02) 4 to two decimal places by use of Binomial formula.
- 10. Which term is the middle terms in the Binomial expansion of $(a + b)^n$
 - (i) when n is even (ii) when n is odd
- M. Find the missing element ℓ, r, θ when $\ell = 8.4$, $m, \theta = 2.8$ rad
- 12. Evaluate Cos30°Cos60° Sin 30°Sin60°
- 13. Prove that $1 2Sin^2\theta = 2Cos^2\theta 1$
- 14. Show that $Sin(\alpha + \beta) + Sin(\alpha \beta) = 2Sin\alpha Cos\beta$
- 15. Find the value of Sin 105°, without using calculator.
- 16. Express $Sin5\theta Sin\theta$ as product
- 17. Prove that $Cos^4\theta Sin^4\theta = \frac{1}{Sec2\theta}$
- 18. Prove that $Sin(180^{\circ} \theta) = Sin\theta$
- In any triangle ABC if a=3, b=7, β = 85° Find α
- Write the Law of Cosines.

121. In any triangle ABC if b=5, c=8, $\alpha = 60^{\circ}$ Find a

- 22. The shadow of a building is 220 meters when the measure of the angle of elevation of the sun in 35°. Find the height of the building.
- 23. Show that the vectors $4\underline{i} 6\underline{j} + 9\underline{k}$ and $-6\underline{i} + 9\underline{j} \frac{27}{2}\underline{k}$ are parallel.
- 24. Find \overline{a} . \overline{b} if $\overline{a} = 2\underline{i} + 3\underline{j} + 4\underline{k}$, $\overline{b} = \underline{i} \underline{j} + \underline{k}$
- 25. For what value of λ the vector $2\underline{i} \underline{j} + 2\underline{k}$ and $3\underline{i} + 2\lambda\underline{j}$ are perpendicular.
- 26. Given the vectors $\overline{a} = 3\underline{i} + \underline{j} \underline{k}$, $\overline{b} = 2\underline{i} + \underline{j} \underline{k}$ Find magnitude of $3\overline{a} \overline{b}$
- 27. Given vector $\overline{a} = 3\underline{i} 2\underline{j} + 4\underline{k}$, $\overline{b} = 2\underline{i} + \underline{j} + 3\underline{k}$ Find the magnitude and Direction Cosines of $\overline{a} \overline{b}$.

SECTION-II

Note: Attempt any three (3) questions.

Q.2 (a) Solve the equation $\frac{4}{x-1} - \frac{5}{x+2} = \frac{3}{x}$ by Factorization.

(b) Show that the roots of the equation $(mx + c)^2 = 4ax$ will be equal if $c = \frac{a}{m}$

Find the middle term in the expansion of $\left(3x^2 + \frac{1}{2x}\right)^{10}$

Q.4 (a) If $Cos\theta = -\frac{\sqrt{3}}{2}$ and the terminal side of the angle lies in the third quadrant,

Find the remaining trigonometric ratios of θ .

(b) Prove that $\frac{\cot^2 \theta - 1}{\cot^2 \theta + 1} = 2\cos^2 \theta - 1$

Show that $\frac{Sin75^{\circ} - Sin15^{\circ}}{Cos75^{\circ} + Cos15^{\circ}} = \frac{1}{\sqrt{3}}$.

- (b) Solve the right triangle ABC in which $\gamma = 90^{\circ}$, $\alpha = 250$, $\alpha = 42^{\circ}25'$
- Q.6 (a) Find the Cosine of the angle between the vectors $\overline{a} = 2\underline{i} 8\underline{j} + 3\underline{k}$, $\overline{b} = 4\underline{j} + 3\underline{k}$. (4+4)
 - (b) Find the vector whose magnitude is 5 and which is in the direction of vector $4\underline{i} 3\underline{j} + \underline{k}$.

CAST

(3x8 = 24)

= (4+4)

1.

SinO= 2

....

(4+4)