DAE/IIA-2016/02 SECOND YEAR

(Common with Architecture, Automation, Auto-Mobile & Diesel,
Auto & Farm Machinery, Civil, Cast Metal & Foundry,
Foundry & Pattern Making, Land & Mine Surveying, Mechanical,
Mining, Mechatronics, Metallurgy & Welding, Q. Surveying,
Construction Machinery and Footwear Technologies.)

MATH-212 APPLIED MATHEMATICS - II PART - B

Time: 2:30 hours Marks:80

SECTION - I

Q.1: Write short answer to any Twenty-Five (25) of the following questions: -

 $25 \times 2 = 50$

1.	If $f(x) = \frac{x^2 - 3}{x + 4}$, find $f(-3)$.	2.	Is the following function even, odd or neither?
3.	Evaluate: $\lim_{x \to -2} \frac{x^2}{x+1}$	4.	$f(x) = x\sqrt{x^2 - 1}$ Evaluate: Lim $\frac{\sin 7\theta}{}$
9.	$x \rightarrow -2$ $x + 1$	7.	Evaluate: $\lim_{\theta \to 0} \frac{\sin 7\theta}{\theta}$
5.	Differentiate $-5+3x-\frac{3}{2}x^2-7x^3$ w.r.t. 'x'.	6.	Differentiate $(x^2 + 3x + 9)^{\frac{3}{2}}$ w.r.t. 'x'.
7.	Differentiate $\sin^n x$ w.r.t. 'x'.	8.	Find $\frac{dy}{dx}$ if $xy + y^2 = 2$
9.	Find $\frac{dy}{dx}$, $x = t + 2$, $y = 2t^2 + 2$	10,	Differentiate $y = \sin^{-1} \sqrt{x}$ w.r.t. 'x'.
11.	Differentiate $\frac{x}{\ell n x}$ w.r.t. 'x'.	12.	Find $\frac{\mathrm{d} y}{\mathrm{d} x}$ for $\mathrm{e}^{\sqrt{x+1}}$
13.	Differentiate cosx w.r.t. sinx.	14.	Find the derivative of $xcotx$ w.r.t. 'x'.
15.	Differentiate $\frac{x}{x^2+1}$ w.r.t. 'x'.	16.	Find the critical values (turning points) for x of the function $5x^2 - 4x + 9$
17.	Evaluate $\int (3x^2 + 2x + 1) dx$	18.	Evaluate $\int \left(e^x + e^{-x}\right)^2 dx$
19.	Evaluate $\int (\sin x - \cos x)^2 dx$	20.	Evaluate $\int (2x+9)^{-5/2} dx$
21.	Evaluate $\int \cos^4 x \sin x dx$	22.	Evaluate $\int \frac{\mathbf{x}}{\mathbf{x}^2 + 1} \mathbf{dx}$
23	Evaluate $\int \frac{1}{\sqrt{x}} \sin \sqrt{x} dx$	24.	Evaluate ∫ℓnx dx
25.	Evaluate $\int_1^3 \mathbf{x}^2 \mathbf{dx}$	26.	Evaluate $\int_0^{\pi/6} 2\sin 2x dx$
27.	Evaluate $\int \frac{1+x}{x} dx$	28.	Find the distance between $\left(-3\ ,-2\right)\ \mathrm{and}\ \left(-1\ ,5\right)$
29.	Find mid-point of the following points: $A(0,-1)$, $B(-1,2)$	30.	Find the slope of a line which is perpendicular to the line joining $P_1(2, 4)$ and $P_2(-2, 1)$.
31.	Find the equation of the line with the intercepts are $\ a=2\ ,\ b=-5$.	32.	Show that the two lines passing through the given points are perpendicular: (8, 0), (6, 6) and (-3, 3), (6, 6)
33.	Reduce the given equations to Slope-intercept form: $6x - 5y = 15$	34.	Show that the three points $(1, 2)$, $(7, 6)$, $(4, 4)$ are collinear.
35.	Find the equation of circle with center at	36.	Find the center and radius of the circle
JJ.	$\left(-2,3 ight)$ and radius 6.	00.	$x^2 + y^2 - 6x + 6y = 0$
37.	What type of circle is represented by $x^2 + y^2 - 2x + 4y + 8 = 0$		

SECTION - II

<u>2</u>

Note: ATTEMPT ANY THREE QUESTIONS.

 $3 \times 10 = 30$

- Q.2: (a) If $f(t) = \frac{t^4 + t^2 + 1}{t^2}$, show that $f(\frac{1}{t}) = f(t)$.
 - Differentiate $\sqrt{\frac{a+x}{a-x}}$ w.r.t. 'x'. **(b)**
- Differentiate $\ell n \frac{x}{\sqrt{1+x^2}}$ w.r.t. 'x'. Q.3: (a)
 - Find the maximum and minimum values of the function $\,2x^3-3x^2-36x+3\,$ **(b)**
- Q.4: (a) Evaluate $\int \left(x + \frac{1}{x}\right) \left(x^2 + \frac{1}{x^2}\right) dx$
 - (b) Evaluate $\int (\tan^4 x + \tan^2 x) dx$
- Q.5: (a) Evaluate $\int (\ell n x)^2 dx$
 - Show that the points A(2,2) , B(6,6) and C(11,1) are the vertices of a right triangle.
- If a line $\,\ell_1^{}$ contains $\,{
 m P}ig(2,6ig)$ and $\,{
 m Q}ig(0,{
 m y}ig).$ find $\,{
 m y}\,$ if $\,\ell_1^{}$ is parallel to $\,\ell_2^{}$ and the slope of Q.6: (a)
 - Find the equation of the circle concentric with the circle $x^2 + y^2 6x + 4y 12 = 0$ with **(b)** radius 6 units.