FIRST YEAR

COMMON WITH BIO MEDICAL, COMPUTER,

COMPUTER INFORMATION, ELECTRICAL, ELECTRONICS, FOOD, FOOD PROCESSING & PRESERVATION, INFORMATION & COMMUNICATION,

INSTRUMENT, INSTRUMENTATION, MECHATRONICS AND TELECOMMUNICATION TECHNOLOGIES,

MATH.123 APPLIED MATHEMATICS-I

PAPER 'A' (Subjective)

Time: 2:30 Hours

Marks: 60

SECTION-1

Q. 1 Write short answers to any Eighteen (18) questions.

18x2=36

- 1. Solve the quadratic equation x(x+7) = (2x-1)(x+4) by factorization.
- 2. Solve the equation $x^2 6x + 8 = 0$ by completing the square.
- 3. Discuss the nature of the roots of the equation $x^2 + x + 1 = 0$.
- For what value of K the roots of the equation Kx² + 4x + 3 = 0 are equal.
- 5. Find the sum and product of the roots of the equation $9x^2 + 6x + 1 = 0$.
- 6. Expand $\left(\frac{x}{2} \frac{2}{y}\right)$ by Binomial theorem.
- Calculate (1.04)⁵ by Binomial Theorem up to two decimal places.
- 8. Find the 8th term in the expansion of $\left(2x^2 \frac{1}{x^2}\right)^{12}$
- 9. Expand $(1 + 2x)^{-2}$ to three terms.
- 10. Which will be the middle term/terms in the expansion of $(x + \frac{3}{x})^{15}$
- 11. Convert 42 36 12" into radians measure.
- Find x, if tan² 45° cos² 60° = x sin 45° cos 45°, tan 60°.
- 13. Prove that $\tan^2 30^\circ + \tan^2 45^\circ + \tan^2 60^\circ = \frac{13}{3}$
- 14. Show that $\cot^4 \theta + \cot^2 \theta = \csc^4 \theta \csc^2 \theta$
- 15. Prove that $Cos(-\beta) = Cos\beta$
- 16. Show that $Sin (\alpha + \beta) + Sin (\alpha \beta) = 2 Sin\alpha Cos \beta$
- 17. If $\sin \theta = \frac{4}{5}$ and the terminal side of 0 lies in 1stquadrant, find $\cos \frac{\theta}{2}$
- Express Cosθ Cos4θ as product.
- 19. In right triangle ABC, $\gamma = 90^{\circ}$, a = 5, c = 13 then find the value of angle α .
- The sides of a triangle are 16, 20 and 33 meters respectively. Find its greatest angle.
- A minaret stands on the horizontal ground. A man on the ground, 100 m from the minaret, the angle of elevation of the top of the minaret to be 60°. Find its height.
- 22. In any triangle ABC if a = 16, b = 17, $\gamma = 25^{\circ}$, Find c.
- 23. What are parallel vectors?
- 24. Given the vectors, $\bar{a} = 3i 2j + k$, $\bar{b} = 2i 4j 3k$, $\bar{c} = -i + 2j + 2$, Find $\bar{a} + \bar{b} + \bar{c}$.
- 25. Find the area of parallelogram with adjacent sides, $\bar{a} = 7i j + k$ and $\bar{b} = 2j 3k$
- Write the phasor (vector) Z=a + jb in Trigonometric and Exponential form.
- 27. Given that $Z_1 = 4 \angle 60^0$ and $Z_2 = 2 \angle 30^0$ find $\frac{Z_1}{Z_2}$

SECTION-II

Note: Attempt any three (03) questions.

3x8 = 24

- Q.2 (a) Solve the equation $x^2 3\left(x + \frac{25}{4}\right) = 9x \frac{25}{2}$ by using quadratic formula.
 - (b) Show that the roots of the equation $x^2 2(m + \frac{1}{m})x + 3 = 0$ are real
- Q.3 (a) Find the 5th term in the expansion of $\left(2x^2 \frac{3}{x}\right)^{10}$
 - (b) Expand $(4 + x)^{1/2}$ upto four terms.
- Q.4 (a) Prove that $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta \tan\theta$
 - (b) Prove that $\frac{\tan \theta}{1 \cot \theta} + \frac{\cot \theta}{1 \tan \theta} = \sec \theta \operatorname{Cosec} \theta + 1$
- **Q.5** (a) Prove that: $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \frac{3}{16}$
 - (b) In any triangle ABC if a = 211.3, $\beta = 48^{\circ}16'$, $\gamma = 71^{\circ}38'$ Find b
- Q.6 (a) If $\overline{a} = 3i j 4k$, $\overline{b} = -2i + 4j 3k$ and $\overline{c} = i + 2j k$. Find unit vector parallel to $3\overline{a} - 2\overline{b} + 4\overline{c}$.
 - (b) Find the cosine of the angle between the vectors:

$$\overrightarrow{a} = 2i - 8j + 3k$$
, $\overrightarrow{b} = 4j + 3k$
