FOOD PROCESSING & PRESERVATION, INFORMATION & COMMUNICATION, INSTRUMENT, INSTRUMENTATION, MECHATRONICS

AND TELECOMMUNICATION TECHNOLOGIES.

MATH.123 APPLIED MATHEMATICS-I

PAPER 'B' (Subjective)

Time: 2:30 Hours

SECTION-I

Marks: 60

Q. 1 Write short answers to any Eighteen (18) from the following questions.

18x2 = 36

- 1. Write the conjugate and modulus of -2 + i
- 2. Find the conjugate and modulus of $\frac{1+i}{1-i}$
- 3. Show that $\left| \frac{1+2i}{2-i} \right| = 1$
- 4. Factorize $9a^2 + 64b^2$
- 5. Express |Z| = 6 and $\arg Z = \frac{3\pi}{4}$ in the form x + iy
- 6. Define proper fraction and give example.
- 7. Resolve $\frac{x^2+1}{(x+1)(x-1)}$ into partial fractions.
- 8. Write an identity equation of $\frac{(x-1)(x-2)(x-3)}{(x-4)(x-5)(x-6)}$
- 9. Form of partial fraction of $\frac{1}{(x^2+1)(x-2)}$ is _____.
- 10. Convert binary number 10101₂ to decimal numbers.
- 11. Multiply the binary numbers $111_2 \times 101_2$
- 12. Define AND Gate and draw logic circuit diagram.
- 13. Prove AB +AC + ABC= AB+AC by Boolean Algebra rules.
- 14. Construct a logic diagram for expression $AB = A \cdot B$
- 15. Write distance formula between two points and give one example.
- 16. Find the co-ordinates of the point P(x,y) which divide internally the segment through P_1 (-2,5) and P_2 (4, -1) in the ratio of $\frac{r_1}{r_2} = \frac{6}{5}$.
- 17. If the mid-point of a segment is (6,3) and one end point is(8, -4), what are the co-ordinates of the other end point.
- 18. Find the angle between the lines having slopes -3 and 2
- 19. Find the equation of a line through the points (-1, 2) and (3, 4).
- 20. Find an equation of the line with the following intercepts a = 2, b = -5
- 21. Reduce the equation 3x + 4y 2 = 0 into intercept form.
- 22. Find the equation of the line passing the point (1, -2) and making an angle of 135° with the x-axis.
- 23. Find the points of intersection of the lines x + 2y 3 = 0, 2x 3y + 8 = 0
- 24. Find the equation of circle with centre (-3, 4) and radius 4.
- 25. Find the equation of the circle which is tangent to the positive x- axis and y axis and radius 5 units.
- 26. Find the equation of circle with centre (3, 0) and tangent to y axis.
- 27. Find the equation of circle with centre on origin and radius is $\frac{1}{2}$.

SECTION-I

Note: Attempt any three (03) questions.

3x8 = 24

- **Q. 2** (a) Simplify $\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{-3}$
 - (b) Perform the indicated operation in [3(Cos 22° + i Sin 22°] [2(Cos 8° + i Sin 8°] and express the results in the form a + ib.
- Q. 3 (a) Resolve $\frac{9x^2 9x + 6}{(x-1)(2x-1)(x+2)}$ into partial fraction.
 - (b) Resolve $\frac{x^5}{x^4-1}$ into partial fraction.
- Q. 4 (a) Convert 962.84 decimal number to binary equivalent.
 - (b) Prepare a truth table for ABC + \overline{AB} \overline{C} + \overline{AB} \overline{C}
- Q. 5 (a) If one end of a line whose length is 13 Units is the point (4, 8) and the ordinate of the other end is 3. What is its abscissa?
 - (b) Find the point which is $\frac{7}{10}$ of the way from the point (4, 5) to the point (-6, 10).
- **Q.** 6 (a) Show that the circles $x^2 + y^2 + 2x 2y 7 = 0$ and $x^2 + y^2 6x + 4y + 9 = 0$ touch externally.
 - (b) Find the equation of the circle having (-2, 5) and (3, 4) as the end points of its diameter. Find also its centre and radius.
