EXERCISE #14

559

Chapter No.14

SOLUTIONS OF TRIGONOMETRIC EQUATIONS

Trigonometric Equations:

The equations containing at least one trigonometric functions are called trigonometric equations. $\sin x = 5$, $\sec x = \tan x$ e.g.,

Trigonometric equations have an infinite number of solutions due to the periodicity of the trigonometric functions.

Example 1: Solve the equation	Exa	Example 2: Solve the equation:							
Colutions Cines size in the ind C II.		$==1$ $= \pi/$	$1 + \cos x = 0$						
Solution: Since Sin X is + ve in 1 & 11 i	angle is 76 ¹ Solu	Solution: $1 + \cos x = 0$							
For I Quadrant	For II Quadrant	earn M. cos	x = -1						
$\mathbf{x} - \mathbf{\theta} - \frac{\pi}{2} - \frac{\pi}{2} + 2n\pi$	$\mathbf{x} - \pi - \theta - \pi - \frac{\pi}{2} - \frac{2}{3}$	5π $x =$	$\cos^{-1}(-1)$						
$x = 0 = \frac{1}{6} = \frac{1}{6$	$\begin{pmatrix} x - x & 0 - x \\ 0 & 6 \end{pmatrix}$	$6 \qquad x =$	$\pi \implies x = \pi + 2n\pi$						
$S.S. = \left\{\frac{\pi}{6} + 2n\pi\right\}$	$\cup \left\{ \frac{5\pi}{6} + 2n\pi \right\}, \ n \in \mathbb{Z}$		S.S. = $\{\pi + 2n\pi\}$, $n \in \mathbb{Z}$						
Example 3: Solve the equation: $4\cos^2 x - 3 = 0$									
Solution: $4\cos^2 x - 3 = 0 \Rightarrow 4\cos^2 x = 3 \Rightarrow \cos^2 x = \frac{3}{4} \Rightarrow \cos x = \pm \frac{\sqrt{3}}{2}$									
Since $\cos x$ is +ve in I	& IV quadrant	Since cos x is – v	sx is – ve in II & III quadrant						
with the reference an	gle is $\pi/6$:	with the reference angle is $\frac{\pi}{6}$:							
For I Quadrant For	IV Quadrant	For II Quadrant	For III Quadrant						
$ \Theta = \frac{\pi}{6} $ $ \Theta = $	$2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$	$\theta=\pi-\frac{\pi}{6}=\frac{5\pi}{6}$	$\theta = \pi + \frac{\pi}{6} = \frac{7\pi}{6}$						
$\theta = \frac{\pi}{6} + 2n\pi$ $\theta =$	$\frac{11\pi}{6} + 2n\pi$	$\theta = \frac{5\pi}{6} + 2n\pi$	$\theta = \frac{7\pi}{6} + 2n\pi$						
$S.S. = \begin{cases} \frac{\pi}{6} + 2t \end{cases}$	$n\pi$ $\bigg\} \cup \bigg\{ \frac{11\pi}{6} + 2n\pi \bigg\} \cup$	$\left\{\frac{5\pi}{6}+2n\pi\right\}\cup\left\{\frac{7\pi}{6}\right\}$	$\left\{\frac{\pi}{2}+2n\pi\right\}, n \in \mathbb{Z}$						
Example 4: Solve the equation Solution: $\sin x + \cos x =$	Example 4: Solve the equation: $\sin x + \cos x = 0$ Solution: $\sin x + \cos x = 0$ Example 5: Solve the equation: $\sin x \cos x = \sqrt{3/4}$								
$\sin x = -\cos x$		Solution: sin x co	$\cos x = \sqrt{3}/4$						
$\frac{\sin x}{\cos x} = -1 \qquad \Rightarrow \qquad$	$\tan x = -1$	$2\sin x \cos x = \sqrt{3}/2 \Rightarrow \sin 2x = \sqrt{3}/2$							

562 H

Key to Algebra & Trigonometry

SOLUTION OF EXERCISE # 14

Exercise # 14

Q.1: Find the solutions of the following equations which lie in $[0, 2\pi]$:

(i)
$$\sin x = -\frac{\sqrt{3}}{2}$$
 (ii) $\csc \theta = 2$ (iii) $\sec x = -2$ (iv) $\cot \theta = \frac{1}{\sqrt{3}}$

Solution:

(i)
$$\sin x = -\sqrt{3}/2$$

Since sin x is - ve in III & IV quadrant
with the reference angle is $\frac{\pi}{3}$:
For III Quadrant
 $x = \pi + \frac{\pi}{3} \Rightarrow \boxed{x = \frac{4\pi}{3}}$
(ii) $\cos ec\theta = 2$
Since $\csc \theta$ is + ve in I & II quadrant
with the reference angle is $\frac{\pi}{3}$:
For IV Quadrant
 $x = \pi - \frac{\pi}{3} \Rightarrow \boxed{x = \frac{2\pi}{3}}$
For II Quadrant
 $x = \pi - \frac{\pi}{3} \Rightarrow \boxed{x = \frac{2\pi}{3}}$
For II Quadrant
 $x = \pi - \frac{\pi}{3} \Rightarrow \boxed{x = \frac{2\pi}{3}}$
For II Quadrant
 $x = \pi - \frac{\pi}{3} \Rightarrow \boxed{x = \frac{2\pi}{3}}$
For II Quadrant
 $x = \pi + \frac{\pi}{3} \Rightarrow \boxed{x = \frac{4\pi}{3}}$
For II Quadrant
 $x = \pi + \frac{\pi}{3} \Rightarrow \boxed{x = \frac{4\pi}{3}}$
For II Quadrant
 $x = \pi + \frac{\pi}{3} \Rightarrow \boxed{x = \frac{4\pi}{3}}$
For II Quadrant
 $x = \pi + \frac{\pi}{3} \Rightarrow \boxed{x = \frac{4\pi}{3}}$
For II Quadrant
 $x = \pi + \frac{\pi}{3} \Rightarrow \boxed{x = \frac{4\pi}{3}}$
For II Quadrant
 $x = \pi + \frac{\pi}{3} \Rightarrow \boxed{x = \frac{4\pi}{3}}$

Q.2: Solve the following trigonometric equations:

(i)
$$\tan^2 \theta = \frac{1}{3}$$
 (ii) $\csc^2 \theta = \frac{4}{3}$ (iii) $\sec^2 \theta = \frac{4}{3}$ (iv) $\cot^2 \theta = \frac{1}{3}$

Solution:

(i)
$$\tan^2 \theta = \frac{1}{3} \implies \sqrt{\tan^2 \theta} = \pm \sqrt{\frac{1}{3}} \implies \tan \theta = \frac{1}{\sqrt{3}} \quad \text{and} \quad \tan \theta = \frac{-1}{\sqrt{3}}$$

Since $\tan\theta$ is + ve in I & III quadrant with the reference angle is $\frac{\pi}{6}$: Since $\tan\theta$ is – ve in II & IV quadrant with the reference angle is $\frac{\pi}{6}$:

For I QuadrantFor III QuadrantFor II QuadrantFor II QuadrantFor IV Quadrant
$$\theta = \frac{\pi}{6}$$
 $\theta = \pi + \frac{\pi}{6} = \frac{7\pi}{6}$ $\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$ $\theta = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$ $\theta = \frac{\pi}{6} + n\pi$ $\theta = \frac{7\pi}{6} + n\pi$ $\theta = \frac{5\pi}{6} + n\pi$ $\theta = \frac{11\pi}{6} + n\pi$ S.S. $= \left\{\frac{\pi}{6} + n\pi\right\} \cup \left\{\frac{7\pi}{6} + n\pi\right\} \cup \left\{\frac{5\pi}{6} + n\pi\right\} \cup \left\{\frac{11\pi}{6} + n\pi\right\}$, $n \in \mathbb{Z}$

Key to Algebra & Trigonometry

SOLUTION OF EXERCISE #14

563

564

Key to Algebra & Trigonometry

SOLUTION OF EXERCISE # 14

Find the values of θ satisfying the following equations:

Q.3: $3\tan^2\theta + 2\sqrt{3}\tan\theta + 1 = 0$				Q.4: $\tan^2 \theta - \sec \theta - 1 = 0$							
Solution: Here	e a = 3,	$b = 2\sqrt{3}$, c	=1	Solution: $\tan^2 \theta - \sec \theta - 1 = 0$							
		$-\mathbf{h} + \mathbf{v}$	$b^2 - 4ac$	$\sec^2 \theta - 1 - \sec \theta - 1 = 0 \implies \sec^2 \theta - \sec \theta - 2 = 0$							
By using quadra	tic formula	$\tan \theta = \frac{\theta \pm \sqrt{\theta}}{1 + 1}$	$\frac{1}{2a}$	$\sec^2 \theta - 2 \sec \theta + \sec \theta - 2 = 0$ by factorization							
_2./3	$\frac{1}{2} + \sqrt{2\sqrt{2}}$	$\Big)^{2} - 4(3)(1)$		$\sec^2 \theta (\sec \theta - 2) + 1 (\sec \theta - 2) = 0$							
$\tan \theta =$	$\frac{\gamma + \sqrt{2\sqrt{3}}}{2\sqrt{2}}$	$\frac{1}{2} = \frac{1}{4} \frac{(3)(1)}{(3)}$		$(\sec\theta - 2)(\sec\theta + 1) = 0$							
2.2	$\frac{2(3)}{12}$	$\frac{1}{2}$ $2\sqrt{2}$	1	Either			OR				
$\tan \theta = \frac{-2\sqrt{3} \pm \sqrt{12} - 12}{6} = \frac{-2\sqrt{3}}{6} = \frac{-1}{\sqrt{3}}$				$\sec \theta =$	$2 \Rightarrow$	$\cos\theta = -$	$\frac{1}{2}$	$\sec \theta = -1$ $\cos \theta = -1$			
Since ta	nθ is – v	e in II & IV qu	adrant ⁄	Since co	osθ is +ve ir	n I & IV quad	drant	$\theta = \cos^{-1}(-1)$			
with the	e referen	ce angle is $\frac{\pi}{6}$		with th	e reference	angle is $\frac{\pi}{3}$:		$\theta = \pi + 2n\pi$			
For II Ou	adrant	For IV Quadra	yay .	For I Ou	adrant	I Eor IV Qua	drant	$\theta = 2n\pi + \pi$			
	τ 5π		11π	π			5π	$\theta = (2n+1)\pi$			
$\Theta = \pi - \frac{1}{6}$	$\frac{1}{6} = \frac{1}{6}$	$\theta = 2\pi - \frac{\pi}{6} =$	6	$\theta = \frac{1}{3}$		$\theta = 2\pi - \frac{\pi}{3}$	$=\frac{1}{3}$				
$\Theta = \frac{5\pi}{6} +$	- nπ	$\theta = \frac{11\pi}{6} + n\pi$	\mathbb{N}	$\theta = \frac{\pi}{3} +$	- 2nπ	$\theta = \frac{5\pi}{3} + 2t$	nπ				
$S.S = \left\{\frac{5\pi}{6}\right\}$	$+n\pi \bigg\} \cup \langle$	$\left\{\frac{4\pi}{6}+n\pi\right\}, n$	$i \in \mathbf{Z}$	S.S. = $\left\{\frac{\pi}{3} + 2n\pi\right\} \cup \left\{\frac{5\pi}{3} + 2n\pi\right\} \cup \left\{(2n+1)\pi\right\}, n \in \mathbb{Z}$							
Q.5: 2sinθ-	$+\cos^2\theta$	-1=0	Q.6: 2	$2\sin^2\theta - \sin\theta = 0$							
Solution: 2sin	$\theta + \cos^2 \theta$	$\theta - 1 = 0$	Solution	lution: $2\sin^2\theta - \sin\theta = 0 \Rightarrow \sin\theta(2\sin\theta - 1) = 0$							
$2\sin\theta + (1 -$	$-\sin^2\theta)-$	1=0	Either s	$\sin\theta = 0$	OR	$2\sin\theta - 1$	= 0				
$2\sin\theta + \chi -$	$-\sin^2\theta - \lambda$	l' = 0	$\sin\theta=0$	ADF	\Rightarrow sin	$n\theta = \frac{1}{2}$					
$2\sin\theta - \sin\theta$	$e^2 \theta = 0$		$\theta = \sin^{-1}$	(0)	Since sinx is $\pm ve$ in 1.8 II quadrant						
$\sin \theta (2 - \sin \theta)$	$(n \theta) = 0$		$\theta = 0$		with the r	eference ar	nglo is 1	τ/.			
Either sin ($\theta = 0$ OR	$2 - \sin \theta = 0$	$\theta = 0 + n$	π	with the r		igic 13 /	/6·			
			$\theta = n\pi$		For I Quad	Irant	For II	Quadrant			
$\sin\theta = 0$	$2-\sin \theta$	$\theta = 0$			$\theta = \frac{\pi}{a}$		$\theta = \pi$	$-\frac{\pi}{\alpha}$			
$\theta = \sin^{-1}(0)$	$\sin\theta =$	2			6 π		5	6 .			
$\theta = 0$	Which is r	10t possible			$\theta = \frac{\pi}{6} + 2n$	π	$\theta = \frac{3\pi}{6}$	$+2n\pi$			
$\theta = n\pi$	∵ -1≤	$\leq \sin\theta \leq 1$			Ű						
S.S. = $\{n\pi,$	$\forall n \in z$	$h, n \in \mathbb{Z}$	S.	$\mathbf{S}. = \{\mathbf{n}\pi\}$	$\mathfrak{c} \Big\} \cup \bigg\{ \frac{\pi}{6} + 2i$	$n\pi$ $\bigg\} \cup \bigg\{ \frac{5\pi}{6} \bigg\}$	$+2n\pi$	$\Rightarrow, \ n \in Z$			

Key to Algebra & Trigonometry

SOLUTION OF EXERCISE # 14

565

Q.7: 3 co	$e^{s^2} \theta - 2\sqrt{3} si$	$n\theta\cos\theta - 3s$	$\sin^2\theta=0$	Q.8:	$4\sin^2\theta$	$-8\cos\theta + 1 = 0$			
Solution: $3\cos^2 \theta - 2\sqrt{3}\sin\theta\cos\theta - 3\sin^2 \theta = 0$ $3\cos^2 \theta - 3\sqrt{3}\sin\theta\cos\theta + \sqrt{3}\sin\theta\cos\theta - 3\sin^2 \theta = 0$ $3\cos\theta(\cos\theta - \sqrt{3}\sin\theta) + \sqrt{3}\sin\theta(\cos\theta - \sqrt{3}\sin\theta) = 0$ $(\cos\theta - \sqrt{3}\sin\theta)(3\cos\theta + \sqrt{3}\sin\theta) = 0$ Either $\cos\theta - \sqrt{3}\sin\theta = 0$ OR $3\cos\theta + \sqrt{3}\sin\theta = 0$					Solution: $4\sin^2 \theta - 8\cos \theta + 1 = 0$ $4(1 - \cos^2 \theta) - 8\cos \theta + 1 = 0$ $4\cos^2 \theta + 8\cos \theta - 5 = 0$ $4\cos^2 \theta + 10\cos \theta - 2\cos \theta - 5 = 0$ $2\cos \theta (2\cos \theta + 5) - 1(2\cos \theta + 5) = 0$ $(2\cos \theta + 5)(2\cos \theta - 1) = 0$ Either $2\cos \theta + 5 = 0$ OB $2\cos \theta - 1 = 0$				
$\cos \theta = \sqrt{3} \text{ s}$ $\tan \theta = \frac{1}{\sqrt{3}}$ Since $\tan x$ is & III quad.w reference as	$\sin \theta$ $\overline{3}$ is + ve in I vith the ngle is $\frac{\pi}{6}$:	$\sqrt{3}\sin\theta = -3$ $\tan\theta = -\sqrt{3}$ Since $\tan x$ is & IV quad.wi reference and	$3\cos\theta$ - ve in II th the gle is $\frac{\pi}{3}$:	$2\cos\theta = 2\cos\theta$ $\cos\theta = \cos\theta = 0$ Which i possibl	+5 = 0 = -5 $-\frac{5}{2}$ -2.5 snot e	$\cos \theta = \frac{1}{2}$ $\theta = \cos^{-1}\left(\frac{1}{2}\right) = 60$ Since cos x is + ve with the reference	$0^{\circ} = \frac{\pi}{3}$ in I & IV quad. e angle is $\frac{\pi}{3}$:		
For I Quad.	For III Quad.	For II Quad.	For IV Quad.	. =1 \	$\cos \theta \leq 1$	For I Quadrant	For IV Quadrant		
$\theta = \frac{\pi}{6}$ $\theta = \frac{\pi}{6} + n\pi$ $S.S. = \left\{\frac{\pi}{6} + n\pi\right\}$	$\theta = \pi + \frac{\pi}{6}$ $\theta = \frac{7\pi}{6} + n\pi$ $\left\{ \bigcup \left\{ \frac{7\pi}{6} + n\pi \right\} \bigcup \right\}$	$\theta = \pi - \frac{\pi}{3}$ $\theta = \frac{2\pi}{3} + n\pi$ $\left\{\frac{2\pi}{3} + n\pi\right\} \cup \left\{\frac{5\pi}{3} + n\pi\right\}$	$\theta = 2\pi - \frac{\pi}{3}$ $\theta = \frac{5\pi}{3} + n\pi$ $+ n\pi \bigg\}, n \in \mathbb{Z}$	S	$S. = \left\{\frac{\pi}{3} + \right.$	$\theta = \frac{\pi}{3}$ $\theta = \frac{\pi}{3} + 2n\pi$ $2n\pi \left\{ \bigcup \left\{ \frac{5\pi}{3} + 2n \right\} \right\}$	$\theta = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$ $\theta = \frac{5\pi}{3} + 2n\pi$ $n\pi \bigg\}, n \in \mathbb{Z}$		

Find the solution sets of the following equations:

566

Key to Algebra & Trigonometry

SOLUTION OF EXERCISE #14

$$\begin{aligned} \mathbf{x} &= \frac{\pi}{3} \Rightarrow \mathbf{x} = \frac{\pi}{3} + 2n\pi \quad \left| \begin{array}{c} \mathbf{x} &= 2\pi - \frac{\pi}{3} \Rightarrow \mathbf{x} = \frac{5\pi}{3} + 2n\pi \\ \text{It is not admissible} \\ \because \text{ it does not satisfied the given eq.} \end{array} \right| \\ \text{S.S.} &= \left\{ \frac{\pi}{3} + 2n\pi \right\} \cup \left\{ \pi + 2n\pi \right\}, \quad \mathbf{n} \in \mathbf{Z} \end{aligned}$$

Q.10: $\cos 2x = \sin 3x$

Solution: $\cos 2x = s$	sin 3x		
$\cos^2 x - s$	$in^2 x = 3\sin x - 4\sin^3 x$		4 -2 -3 1
$1-\sin^2 x$	$-\sin^2 x - 3\sin x + 4\sin^3$	$\mathbf{x} = 0$	1 4 2 -1
$4\sin^3 x$ –	$2\sin^2 x - 3\sin x + 1 = 0$		4 2 -1 0
By synthe	etic division, we have :	earn	
The above equation	on is satisfied by: sin x	$=1$ \Rightarrow $x = \frac{\pi}{2} + 2r$	$n\pi, \forall n \in z$
$4 \sin^2 x + 2 \sin^$	in $x - 1 = 0$		
By using quadratic	Formula: $\sin x = \frac{-b \pm \sqrt{k}}{2}$	$\frac{b^2 - 4ac}{ba}$ Here $a = 4$, b	c = 2, c = -1
$\sin x = -2 \pm \sqrt{(2)^2 - (2)^2$	$\frac{4(4)(-1)}{4(4)(-1)} = \frac{-2 \pm \sqrt{4+16}}{4(4)(-1)}$	$= \frac{-2 \pm \sqrt{4 \times 5}}{-2 \pm 2\sqrt{5}} = \frac{-2 \pm 2\sqrt{5}}{-2 \pm 2\sqrt{5}}$	$=\frac{2\left(-1\pm\sqrt{5}\right)}{-1\pm\sqrt{5}}=\frac{-1\pm\sqrt{5}}{-1\pm\sqrt{5}}$
2(4)) _ 8	8 8	8 4
Either sin x	$=\frac{-1+\sqrt{5}}{4}$	OR $\sin x = \frac{-1 - \sqrt{4}}{4}$	5
$\mathbf{x} = \sin^{-1} \left(\frac{-1 + \sqrt{4}}{4} \right)$	$\left(\frac{\sqrt{5}}{5}\right) \Rightarrow x = 180^{\circ} = \frac{\pi}{10}$	$x = \sin^{-1}\left(\frac{-1 - \sqrt{5}}{4}\right) \Rightarrow$ Since sinx is – ve in II &	$x = 54^{\circ} = \frac{3\pi}{10}$ IV quadrant
Since $\sin x$ is $+v$	e in I & II quadrant		3π
with the referen	ce angle is $\frac{\pi}{10}$:	with the reference angle	$\frac{1}{10}$
For I Quadrant	For II Quadrant	For III Quadrant	For IV Quadrant
$\mathbf{x} = \frac{\pi}{10}$	$\mathbf{x} = \pi - \frac{\pi}{10}$	$\mathbf{x} = \pi + \frac{3\pi}{10}$	$\mathbf{x} = 2\pi - \frac{3\pi}{10}$
$x = \frac{\pi}{10} + 2n\pi$	$\mathbf{x} = \frac{9\pi}{10} + 2\mathbf{n}\pi$	$x = \frac{13\pi}{10} + 2n\pi$	$x = \frac{17\pi}{10} + 2n\pi$

Ch. # 14 (Solutions of Trigonometric Equations) 567 Key to Algebra & Trigonometry **SOLUTION OF EXERCISE #14** S.S. = $\left\{\frac{\pi}{2} + 2n\pi\right\} \cup \left\{\frac{\pi}{10} + 2n\pi\right\} \cup \left\{\frac{9\pi}{10} + 2n\pi\right\} \cup \left\{\frac{13\pi}{10} + 2n\pi\right\} \cup \left\{\frac{17\pi}{10} + 2n\pi\right\}, n \in \mathbb{Z}$ **Q.11:** $\sec 3\theta = \sec \theta$ Q.12: $\tan 2\theta + \cot \theta = 0$ **Solution:** $\tan 2\theta + \cot \theta = 0$ **Solution:** $\sec 3\theta = \sec \theta \Rightarrow \frac{1}{\cos 3\theta} = \frac{1}{\cos \theta}$ $\tan 2\theta = -\cot \theta \implies \frac{\sin 2\theta}{\cos 2\theta} = -\frac{\cos \theta}{\sin \theta}$ $\cos 3\theta = \cos \theta \implies \cos 3\theta - \cos \theta = 0$ $\sin 2\theta \sin \theta = -\cos 2\theta \cos \theta$ $-2\sin\left(\frac{3\theta+\theta}{2}\right)\sin\left(\frac{3\theta-\theta}{2}\right)=0$ $\sin 2\theta \sin \theta + \cos 2\theta \cos \theta = 0$ $-2\sin 2\theta\sin\theta = 0$ $\cos 2\theta \cos \theta + \sin 2\theta \sin \theta = 0$ **Either** $\sin 2\theta = 0$ **OR** $\sin \theta = 0$ $\cos(2\theta - \theta) = 0 \qquad \because \left\{ \begin{array}{c} \cos(\alpha + \beta) = \\ \cos \alpha \cos \beta + \sin \alpha \sin \beta \end{array} \right\}$ $2\theta = \sin^{-1}(0)$ $\theta = \sin^{-1}(0)$ $2\theta = n\pi \Rightarrow \theta = \frac{n\pi}{2} \quad \theta = n\pi \qquad \qquad \theta = \cos^{-1}\theta$ $\theta = \cos^{-1}(0) \implies \theta = (2n+1)\frac{\pi}{2}$ S.S. = $\left\{\frac{n\pi}{2}\right\} \cup \{n\pi\}, n \in \mathbb{Z}$ S.S. = $\left\{ (2n+1)\frac{\pi}{2} \right\}, n \in \mathbb{Z}$ Q.13: $\sin 2x + \sin x = 0$ Q.14: $\sin 4x - \sin 2x = \cos 3x$ $\sin 4x - \sin 2x = \cos 3x$ Solution: $\sin 2x + \sin x = 0$ Solution: $2\sin x \cos x + \sin x = 0 :: \{\sin 2x = 2\sin x \cos x\}$ $2\cos\left(\frac{4x+2x}{2}\right)\sin\left(\frac{4x-2x}{2}\right) = \cos 3x$ $\sin x \left(2\cos x + 1 \right) = 0$ $2\cos 3x\sin x - \cos 3x = 0 \implies \cos 3x (2\sin x - 1) = 0$ **OR** $2\cos x + 1 = 0$ **Either** $\sin x = 0$ Either $\cos 3x = 0$ OR $2\sin x - 1 = 0$ $\begin{array}{l} \sin x = 0 \\ x = \sin^{-1}(0) \end{array} \begin{array}{l} 2\cos x = -1 \quad \Rightarrow \quad \cos x = -\frac{1}{2} \\ \mbox{Since } \cos x \mbox{ is } - \mbox{ve in II \& III quad.} \end{array}$ $3\mathbf{x} = \cos^{-1}(0)$ $2\sin \mathbf{x} = 1 \implies \sin \mathbf{x} = \frac{1}{2}$ $3x = (2n+1)\frac{\pi}{2}$ Since sinx is +ve in I & II quad. $x = n\pi$ with the reference angle is $\frac{\pi}{3}$: $x = (2n+1)\frac{\pi}{c}$ with the reference angle is $\frac{\pi}{c}$: For II Quadrant For III Quadrant For I Quadrant For II Quadrant $\mathbf{x} = \frac{\pi}{6} \qquad \qquad \mathbf{x} = \pi - \frac{\pi}{6}$ $\mathbf{x} = \pi - \frac{\pi}{3} \qquad \qquad \mathbf{x} = \pi + \frac{\pi}{3}$ $x = \frac{2\pi}{3} + 2n\pi$ $x = \frac{4\pi}{3} + 2n\pi$ $\mathbf{x} = \frac{\pi}{6} + 2\mathbf{n}\pi \qquad \qquad \mathbf{x} = \frac{5\pi}{6} + 2\mathbf{n}\pi$

 $S.S. = \{n\pi\} \cup \{\frac{2\pi}{3} + 2n\pi\} \cup \{\frac{4\pi}{3} + 2n\pi\}, n \in \mathbb{Z}$ $S.S. = \{(2n+1)\frac{\pi}{6}\} \cup \{\frac{\pi}{6} + 2n\pi\} \cup \{\frac{5\pi}{6} + 2n\pi\}, n \in \mathbb{Z}$

568 k

Key to Algebra & Trigonometry

SOLUTION OF EXERCISE #14

Q.15: $\sin x + \cos 3x = \cos 5x$ Q.16: $\sin 3x + \sin 2x + \sin x = 0$ **Solution:** $\sin 3x + \sin 2x + \sin x = 0$ **Solution:** $\sin x + \cos 3x = \cos 5x$ $\sin 3x + \sin x + \sin 2x = 0$ $\sin x = \cos 5x - \cos 3x$ $\sin x = -2\sin\left(\frac{5x+3x}{2}\right)\sin\left(\frac{5x-3x}{2}\right)$ $2\sin\left(\frac{3x+x}{2}\right)\cos\left(\frac{3x-x}{2}\right) + \sin 2x = 0$ $2\sin 2x\cos x + \sin 2x = 0$ $\sin x = -2\sin 4x \sin x \Rightarrow \sin x + 2\sin 4x \sin x = 0$ $\sin 2x(2\cos x+1)=0$ $\sin x \left(1 + 2\sin 4x \right) = 0$ **Either** $\sin 2x = 0$ OR $2\cos x + 1 = 0$ **Either** $\sin x = 0$ $1 + 2\sin 4x = 0$ OR $\begin{array}{c} -3.11 \text{ x} = 0 \\ \text{x} = \sin^{-1}(0) \end{array} \quad 2\sin 4\text{x} = -1 \quad \Rightarrow \quad \sin 4\text{x} = -\frac{1}{2} \end{array}$ $3 \operatorname{III} 2 \mathbf{x} = \mathbf{0}$ $2 \mathbf{x} = \sin^{-1}(\mathbf{0})$ $2 \cos \mathbf{x} = -1 \quad \Rightarrow \quad \mathbf{x} = \cos^{-1}\left(-\frac{1}{2}\right)$ Since sinx is - ve in II & IV quad. Since $\cos x$ is -ve in II & III quad. $x = n\pi$ $2\mathbf{x} = \mathbf{n}\pi$ $x = \frac{n\pi}{2}$ with the reference angle is $\frac{\pi}{a}$: with the reference angle is $\frac{\pi}{2}$: For III Quadrant For IV Quadrant For II Quad. For III Quad. $4x = \pi + \frac{\pi}{6} \qquad 4x = 2\pi - \frac{\pi}{6}$ $4x = \frac{7\pi}{6} + 2n\pi \qquad 4x = \frac{11\pi}{6} + 2n\pi$ $\mathbf{x} = \pi - \frac{\pi}{3} \qquad \mathbf{x} = \pi + \frac{\pi}{3}$ $x = \frac{2\pi}{3} + 2n\pi$ $x = \frac{4\pi}{3} + 2n\pi$ $x = \frac{7x}{24} + \frac{n\pi}{2}$ $x = \frac{11\pi}{24} + \frac{n\pi}{2}$ S.S. = $\{n\pi\} \cup \{\frac{7\pi}{24} + \frac{n\pi}{2}\} \cup \{\frac{11\pi}{24} + \frac{n\pi}{2}\}, n \in \mathbb{Z}$ S.S. = $\left\{\frac{n\pi}{2}\right\} \cup \left\{\frac{2\pi}{3} + 2n\pi\right\} \cup \left\{\frac{4\pi}{3} + 2n\pi\right\}, n \in \mathbb{Z}$ Q.18: $\sin x + \sin 3x + \sin 5x = 0$ Q.17: $\sin 7x - \sin x = \sin 3x$ Solution: $\sin 7x - \sin x = \sin 3x$ Solution: $\sin 5x + \sin x + \sin 3x = 0$ $2\cos\left(\frac{7x+x}{2}\right)\sin\left(\frac{7x-x}{2}\right) = \sin 3x$ $2\sin\left(\frac{5x+x}{2}\right)\cos\left(\frac{5x-x}{2}\right) + \sin 3x = 0$ $2\cos 4x\sin 3x - \sin 3x = 0$ $2\sin 3x\cos 2x + \sin 3x = 0$ $\sin 3x(2\cos 4x-1)=0$ $\sin 3x(2\cos 2x+1)=0$ **Either** $\sin 3x = 0$ **Either**, $\sin 3x = 0$ OR $2\cos 4x - 1 = 0$ OR $2\cos 2x + 1 = 0$ $\frac{\sin 3x = 0}{3x = \sin^{-1}(0)} \quad 2\cos 4x = 1 \quad \Rightarrow \quad \cos 4x = \frac{1}{2}$ $3x = \sin^{-1}(0)$ $2\cos 2x = -1 \implies \cos 2x = -\frac{1}{2}$ Since $\cos 4x$ is + ve in I & IV quad. Since $\cos 2x$ is -ve in II & III quad. $3x = n\pi$ $3\mathbf{x} = \mathbf{n}\pi$ $x = \frac{n\pi}{3}$ with the reference angle is $\frac{\pi}{2}$: $x = \frac{n\pi}{3}$ with the reference angle is $\frac{\pi}{2}$:

570

Key to Algebra & Trigonometry

OBJECTIVE TYPE QUESTIONS

CHOOSE THE CORRECT ANSWER:

1.	An equation containin	is called	equation:								
	[a] Algebraic	[b] Exponenti	al	[C] Tri	igono	metric	[d]	None of th	nese		
2.	If the Reference angle	is θ , then soluti	ion in	third quad	lrant	is:					
	[a] θ	[b] $\pi - \theta$		[C] π+	θ		[d]	$2\pi - \theta$			
3.	If the Reference angle	is θ , then soluti	ion in	second qu	adrar	nt is:					
	[a] θ	[b] π – θ		[C] π+	θ		[d]	$2\pi - \theta$			
4.	If $\sin x = rac{\sqrt{3}}{2}$, then re	ference angle is:	[a]	$\frac{\pi}{2}$	[b]	$\frac{\pi}{3}$	[c]	$\frac{\pi}{4}$	[d]	$\frac{\pi}{6}$	
5.	If $\cos x = \frac{1}{\sqrt{2}}$, then re	ference angle is	: [a]	$\frac{\pi}{2}$	[b]	$\frac{\pi}{3}$	[c]	$\frac{\pi}{4}$	[d]	$\frac{\pi}{6}$	
6.	If $\tan x = -1$, then re	ference angle is:	[a]	$\frac{\pi}{2}$	[b]	$\frac{\pi}{3}$	[c]	$\frac{\pi}{4}$	[d]	$\frac{\pi}{6}$	
7.	If $\sec x = -2$, then ref	erence angle is:	[a]	$\frac{\pi}{6}$	[b]	$\frac{\pi}{3}$	[c]	$-\frac{\pi}{3}$	[d]	$\frac{\pi}{4}$	
8.	If $\csc x = 2$, then refer	rence angle is:	[a]	$\frac{\pi}{6}$	[b]	$\frac{\pi}{3}$	[c]	$\frac{\pi}{4}$	[d]	$\frac{\pi}{3}$	
9.	If $\cot^2 x = \frac{1}{3}$, then ref	erence angle is:	[a]	$\frac{\pi}{2}$	[b]	$\frac{\pi}{3}$	[c]	$\frac{\pi}{4}$	[d]	$\frac{\pi}{6}$	
10.	Solution set of 1 + cos	x = 0 is:	[a]	$\left\{\frac{1}{2} + 2n\pi\right\}$	[b]	$\{\pi + 2n\pi\}$	[c]	$\left\{\frac{3\pi}{2} + 2n\pi\right\}$	[d]	$\left\{-\frac{\pi}{2}+2n\pi\right\}$	
11.	If $\sin x = \frac{1}{2}$, then $x = \frac{1}{2}$		[a]	$\frac{\pi}{6}, \frac{7\pi}{6}$	[b]	$\frac{\pi}{6}, \frac{5\pi}{6}$	[c]	$\frac{\pi}{3}, \frac{\pi}{6}$	[d]	$\frac{\pi}{3}, \frac{2\pi}{3}$	
12.	If $\sin x = -\frac{\sqrt{3}}{2}$, then s	solution is:	[a]	$\frac{4\pi}{6}, \frac{5\pi}{6}$	[b]	$\frac{4\pi}{3}, \frac{5\pi}{3}$	[c]	$\frac{5\pi}{6}, \frac{\pi}{6}$	[d]	$\frac{\pi}{3}, \frac{7\pi}{3}$	
13.	If $\sec^2 \theta = \frac{4}{3}$, then $\tan \theta$	$e^2 \theta = ?$	[a]		[b]	$-\frac{1}{3}$	[c]	$\frac{2}{3}$	[d]	$-\frac{2}{3}$	
14.	$\tan^{-1}\left(-\sqrt{3}\right) = ?$		[a]	$\frac{2\pi}{3}$	[b]	$-\frac{2\pi}{3}$	[c]	$-\frac{\pi}{6}$	[d]	$-\frac{\pi}{3}$	
15.	The solution set of tan	x = 0 is given by	r:[a]	$\{2n\pi\}$	[b]	$\left\{\pi+2n\pi\right\}$	[c]	$\{n\pi\}$	[d]	$\{3n\pi\}$	
16.	Trigonometric equatio	n has solutions:	[a]	0	[b]	1	[c]	2	[d]	Infinite	
17.	The equation $\cos^2 x =$	$rac{3}{4}$ has:	[a]	One	[b]	Two	[c]	Four	[d]	Infinite	
18.	If $\sin x = -\frac{1}{2}$, then x =	· ?	[a]	$\frac{\pi}{3}, \frac{2\pi}{3}$	[b]	$\frac{7\pi}{6}, \frac{11\pi}{6}$	[c]	$\frac{\pi}{6}, \frac{5\pi}{6}$	[d]	$\frac{4\pi}{3}, \frac{5\pi}{3}$	
19.	The solution of equation	on $1 + \cos \theta = 0$ a	are in	quadrants	:						
	[a] I and IV	[b] II and III		[C] II ai	nd IV		[d] None of these				

ANSWER KEYS

1	С	2	С	3	b	4	b	5	С	6	С	7	b
8	а	9	d	10	b	11	b	12	b	13	b	14	d
15	С	16	d	17	d	18	b	19	d	20	С	21	b
22	b	23	b	24	d	25	а	26	b	27	а	28	а

FREQUENTLY ASKED AND IMPORTANT QUESTIONS

572

Key to Algebra & Trigonometry

MODEL TEST CHAPTER NO. 14

IIM		wea: 45 Mini	ites					M	aximum	i marks:25
Q.1:	Choo	ese the correct	et answer:							$1 \times 5 = 5$
1.	If cos	$\mathbf{x}=-rac{1}{2}$, then re	ference angle is	: [a] π/3		[b] -	$-\frac{\pi}{3}$	[c]	$\frac{\pi}{6}$	[d] $-\frac{\pi}{6}$
2.	If sin:	$\frac{3\pi}{4}$	[d] $\frac{3\pi}{4} + n\pi$							
3.	If the I	Reference angle	is θ , then solut	tion in fo	urth qua	adrant	t is:			
	[a] θ [b] $\pi - \theta$ [c] $\pi + \theta$ [d] $2\pi - \theta$									
4.	Solution of equation $tan x = \frac{1}{\sqrt{3}}$ lie in:									
	[a] I ai	nd II quad.	[b] I and III qu	ad.	[c] II a	nd IV (quad.	[d]	l and IV qu	uad.
5.	The so	lution set of the	e equation cosed	: θ = 2 in	the inte	rval [0, 2π] is:			
	[a] $\left\{\frac{\pi}{3}\right\}$	$\left\{\frac{\pi}{3}, \frac{\pi}{4}\right\}$	[b] $\left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}$		[c] $\left\{\frac{\pi}{2}\right\}$	$, \frac{2\pi}{3} $	Seg	[d]	$\left\{\frac{\pi}{4},\frac{3\pi}{4}\right\}$	
Q.2:	Write	e short answ	ers to any fiv	re(05) q	uestio	ns:			2	\times 05 = 10
(i) Sol $2\sin^2$ equati	(i) Solve the trigonometric equation: $\sin x + \cos x = 0$. (ii) Find the value of θ satisfying the equation: $2\sin^2 \theta - \sin \theta = 0$. (iii) Solve the trigonometric equation: $1 + \cos x = 0$. (iv) Solve the trigonometric equation: $\sin x \cos x = \frac{\sqrt{3}}{4}$. (v) Solve the trigonometric equation: $\sin x = \frac{1}{2}$.(vi) Solve the trigonometric									
equati	on: sec	x = −2 . (vii) F	ind the value of	θ satisfy	ying the	equat	tion: 2sir	1θ+c	$\mathbf{os}^2 \mathbf{\theta} - 1 =$	= 0 .
Atten	npt an	y one questi	on:						1	× 10 = 10
Q.3	[a]:	Find the value	of θ satisfying	the equa	ation: ta	$n^2 \theta$ -	$-\sec\theta + 1$	= 0.		
	[b]:	Solve the trigo	onometric equat	tion: tan	$h^2 \theta = \frac{1}{3}$	/				
Q.4	[a]:	Solve the trigo	onometric equat	tion: cos	s2x = sin	n 3x.				
	[b]:	Solve the trigo	onometric equat	tion: sin	$\theta + \sin \theta$	$3\theta + si$	$n 5\theta + \sin$	7θ = ().	

