DAE/IIA-2015/02 SECOND YEAR

(Common with Architecture, Automation, Auto-Mobile & Diesel,
Auto & Farm Machinery, Civil, Cast Metal & Foundry,
Foundry & Pattern Making, Land & Mine Surveying, Mechanical,
Mining, Mechatronics, Metallurgy & Welding, Q. Surveying,
Construction Machinery and Footwear Technologies.)

MATH-212 APPLIED MATHEMATICS - II PART - B

Time: 2:30 hours Marks:80

SECTION - I

Q.1: Write short answer to any Twenty-Five (25) of the following questions: -

 $25 \times 2 = 50$

1.	If $f(x) = a^x$, show that f(x+y) = f(x)f(y)	2.	Is the function $f(x) = 2x^3 - 9x$ is an even, odd or neither?
3.	Evaluate $\lim_{x\to 1} \frac{x^2-1}{x-1}$	4.	Evaluate $\lim_{x\to 0} \frac{\tan x}{x}$
5.	Differentiate $\frac{1}{5}x^{\frac{5}{2}} + \frac{1}{3}x^{\frac{3}{2}}$ w.r.t. 'x'.	6.	Find $\frac{dy}{dx}$ if $x^3 + y^3 + 4 = 0$
7.	Find $\frac{dy}{dx}$ if $x = \theta^2 - \theta - 1$, $y = 2\theta^2 + \theta + 1$	8.	Differentiate $\frac{x^2}{1+x^2}$ w.r.t. 'x'.
9.	Differentiate $2x^2 + x + 1$ w.r.t. $x^2 - x - 1$	10.	Differentiate $\cos^2(ax+b)$ w.r.t. 'x'.
11.	Differentiate sinx w.r.t. tanx.	12.	Differentiate $\sin^{-1} x^2$ w.r.t. 'x'.
13.	Differentiate $x \ell nx - x$ w.r.t. 'x'.	14.	Find $\frac{dy}{dx}$ if $y = e^x \ell n x$
15.	Differentiate x cotx w.r.t. 'x'.	16.	Find the critical values (turning points) for x of the function $x^3 + 4x^2 - 3x - 5$
17.	Evaluate $\int (3x^2 + 2x + 1) dx$	18.	Evaluate $\int (\sin x - \cos x)^2 dx$
19.	Evaluate $\int (\tan^4 x + \tan^2 x) dx$	20.	Evaluate $\int \frac{dx}{x\sqrt{1+\ell nx}}$
21.	Find $\int \frac{x^2 + 1}{x + 1} dx$	22.	Evaluate $\int (e^x + e^{-x})^2 dx$
23	Evaluate $\int x \cdot \sin x dx$	24.	Evaluate $\int \ell \mathbf{n} \mathbf{x} \mathbf{dx}$
25.	Evaluate $\int_{1}^{3} \left(x - \frac{1}{x} \right) dx$	26.	Find the value of $\int_0^{\pi/6} \sin x \cos x \ dx$
27.	Find the area bounded by the curve $y=x^3+3x^2 \ \text{, the x-axis and the lines} \ x=0$ and $x=2.$	28.	Find the distance between: $\left(-4,2\right)\&\left(0,5\right)$
29.	What are the x and y-intercepts of $3x + 4y = 12$?	30.	Show that the given points are collinear $\left(1,0 ight),\left(4,-12 ight)\&\left(2,-4 ight)$
31.	Find the coordinates of the mid-point of the segment $P_1\!\left(3\;,7\right),P_2\!\left(-2\;,3\right)$	32.	Is the point $ig(0,4ig)$ inside or outside the circle of radius 4 with center at $ig(-3,1ig)$?
33.	Reduce the given equation to Slope-intercept form $6x - 5y = 15$.	34.	For the triangle $A(1,3)$, $B(-2,1)$, $C(0,-4)$ Find the slope of line parallel to \overline{AC} .
35.	Find the equation of the circles with center $\left(1,-3\right)$ and radius $r=3$.	36.	Find the center and radius of the circle: $x^2 + y^2 + 9x - 7y - 33 = 0$
37.	Find the equation of the circles which touches both the axes of 4 th -quadrant and has a radius of 5 units?		

<u>2</u>

Note: ATTEMPT ANY THREE QUESTIONS.

 $3 \times 10 = 30$

- Q.2: (a) Show that $\frac{e^x + 1}{e^x 1}$ is an odd function of x.
 - Differentiate $\sqrt{\frac{a+x}{a-x}}$ w.r.t. 'x'.
- Q.3: (a) If $y = a \sin \theta + b \cos \theta$, show that $y^2 + \left(\frac{dy}{d\theta}\right)^2 = a^2 + b^2$
 - Discuss for relative maxima and minima of the function $y = x^3 3x^2 + 2$ **(b)**
- Q.4: (a) Evaluate $\int \left(\frac{x^2-8}{x+2}\right) dx$
- (b) Evaluate $\int \tan^4 x \ dx$ Q.5: (a) Evaluate $\int \sin^{-1} x \ dx$
 - (b) If a line ℓ_1 contains (2, 6) and (0, y). Find 'y' if ℓ_1 is parallel to ℓ_2 and the slope of $\ell_2 = \frac{3}{4}$.
- Find the equation of the circle passing through the points $\left(-2\right.,\left.1\right),\,\left(-4\right.,\left.-3\right)\,\&\,\left(3\right.,\left.0\right).$ **Q.6**: