DAE/IIA-2015/08 FIRST YEAR MATH-123 APPLIED MATHEMATICS – I COMMON WITH BIO MEDICAL, COMPUTER, COMPUTER INFORMATION, ELECTRICAL, ELECTRONICS, FOOD, FOOD PROCESSING & PRESERVATION, INFORMATION & COMMUNICATION, INSTRUMENT, INSTRUMENTATION, MECHATRONICS AND TELECOMMUNICATION TECHNOLOGIES.

PAPER 'A' (Subjective)

Time: 2:30 HoursSECTION - I

 $\mathbf{Q.1:}$ Write short answer to any Eighteen (18) questions: -

- **1.** Solve the equation $3x^2 + 7x + 4 = 0$ by factorization.
- **2.** Find the nature of the roots of given equation $2x^2 + 3x + 1 = 0$
- 3. Find the sum and the Product of the roots in the equation $2x^2 + 4 = 7x$
- 4. Form the quadratic equation whose roots are 2, -3
- 5. Solve the quadratic equation $mx^2 + (1+m)x + 1 = 0$
- 6. Expand $(2x 3y)^4$ by Binomial theorem.
- 7. Which will be the middle term/terms in the expansion of $(2x+3)^{12}$
- 8. Compute $(2.03)^5$ to two decimal places of decimal by use of binomial formula.
- 9. Using the binomial expansion, calculate to the nearest hundredth $\sqrt{17}$

10. Expand
$$\frac{1}{(1+x)^2}$$
 to three terms

11. Convert $42^{\circ}36'12''$ into radian measure.

- **12.** Prove that $(1 \sin^2 \theta)(1 + \tan^2 \theta) = 1$
- 13. What is the length of an arc of a circle of radius 5cm whose central angle is 140°?
- **14.** If α , β and γ are the angle of triangle ABC, then prove that $\cos(\alpha + \beta) = -\cos\gamma$.
- **15.** Prove that $\tan^2 30^\circ + \tan^2 45^\circ + \tan^2 60^\circ = \frac{13}{3}$.

16. Prove that
$$\sin \theta + \cos \theta = \sqrt{2} \sin \left(\theta + \frac{\pi}{4} \right)$$
.

- 17. Express the difference $\cos\theta \cos5\theta$ as product.
- **18.** Find the value of $\cos 75^\circ$ without using the calculator.
- **19.** In any triangle ABC if a = 10, b = 15, β = 50°, Find α .
- **20.** Given that $\gamma = 90^{\circ}$, $\alpha = 35^{\circ}$, a = 5, find angle β .
- **21.** In any triangle ABC, by using the law of Cosines, if b = 25, c = 37, $\alpha = 65^{\circ}$, find a.
- **22.** Define the law of Sines.
- 23. Find the magnitude and direction cosine of the vector $\,i-5j-8k\,$.
- **24.** Find 'x' so that \vec{a} and \vec{b} are perpendicular, where $\vec{a} = xi 2j + 5k$, $\vec{b} = 2i j + 3k$.
- **25.** Prove that for the vector \vec{a} and \vec{b} , $|\vec{a} \times \vec{b}|^2 + |\vec{a}.\vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2$.
- **26.** Show that the vectors 3i j + 7k and -6i + 3j + 3k are at right angle to each other.
- **27.** Find a unit vector parallel to the sum of the vectors: $\vec{a} = [2, 4, -5], \vec{b} = [1, 2, 3]$

Marks:60

 $18 \times 2 = 36$

Note: Attempt any three (03) questions.

Q.2: (a) Solve
$$mx^2 + (1+m)x + 1 = 0$$
 by using Quadratic formula.

- (b) If α , β are the roots of the equation $x^2 4x + 2 = 0$, find the equations whose roots are α^2 , β^2 .
- **Q.3:** Find the coefficient of x^{20} in the expansion of $\left(2x^2 + \frac{1}{2x}\right)^{16}$.
- **Q.4:** (a) Prove that $\frac{1 + \tan^2 \theta}{1 + \cot^2 \theta} = \frac{(1 \tan \theta)^2}{(1 \cot \theta)^2}$
 - (b) How far apart are two cities on the equator whose longitudes are 10° E and 50° W? (Radius of the earth is 6400km).
- **Q.5:** (a) Prove that $\frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta} = \tan \alpha + \tan \beta$.
 - (b) In any triangle ABC, if $\alpha = 60^{\circ}$, $\beta = 45^{\circ}$, Find the ratio of b to c.
- **Q.6:** (a) If $\vec{a} = 3i + j k$, $\vec{b} = 2i j + k$ and $\vec{c} = 5i + 5j + 3k$, find $(2\vec{a} + \vec{b})$. \vec{c}
 - (b) Find the sine of the angle and unit vector perpendicular to each: $\vec{a} = i + j + k$ and $\vec{b} = 2i + 3j k$.

SUBJECTIVE

 $3 \times 8 = 24$

2