HATH-113 APPLIED MATHEMATICS --1
COMMON WITH AUTO. ORGEN THEATURE. CASES MATALA & FOUNDRY. CHEMICAL
CANNER WITH AUTO. MARGEN THEATURE. CASES MATALA & FOUNDRY. CHEMICAL
CANNER AND MAINS CONTINUES APPLIES MARGEN SCIENCE CHEMICAL STOLUBORY.
CHEMICAL VENTILATION. ARC CONDITIONING A METHAL TORS.
LIND & MINE SUPERING. MINING A METHAL TORS.
LIND & MINE SUPERING. MINING A METHAL TORS.
LIND & MINE SUPERING. MINING A METHAL TORS.
LIND CHEMICAL. QUALITY & MAXEEVEN AND CONDERS.
DETECOHEMICAL. QUALITY & MAXEEVEN ADD. SUPERATION.
A SECTION - 1
Marks: 60
Q.1: Write short answer to any Eighteen (18) questions:
1 Solve the equation
$$\frac{d}{2} - 3x = 2x = 6$$
 by quadratic formula.
4 If the sum of the crosts of $4x^+$ Lex. $7 = 0$ is 3. Find the value of k.
5 Form the quadratic equation whose roots are $i\sqrt{3}$, and $-i\sqrt{3}$.
6 Find the costs of $4x^+$ Lex. $7 = 0$ is 3. Find the value of k.
7 Form the quadratic equation whose general term is $1 = 1$.
8 Find the sum of the series $5 + 8 = 1 + 1 + 1 + \dots$ to nerms.
9 Find the sum of the series $5 + 8 = 1 + 1 + 4 + \dots$ to nerms.
9 Find the sum of the series $1 + \frac{1}{3} + \frac{1}{9} + \dots$ to 6 terms.
9 Find the sum of the infinite geometric series $2 = \sqrt{2} + 1 + \dots$.
10 Expand $\left(\frac{x}{2} = \frac{y}{2}\right)^{1}$ by using Binomial theorem.
11 Calculate $(1, 02)^{10}$ by Binomial Theorem up to two decimal places.
12 Expand $\left(\frac{x}{2} = \frac{2}{2}\right)^{1}$ by using Binomial theorem.
13 Define improper fraction and give one example.
14 Resolve $\frac{2x}{(x+2)(x+5)}$ into partial fractions.
15 Write an identity equation of $\frac{2x + 5}{x^2 + 5x + 6}$.
16 Convert $\frac{2}{3}$ rad into degree measure.
17 Find the radius of the circle when $(-8.4 \, {\rm cm and } 0 = 2.8 \, {\rm stad}$.
18 Prove that $\tan 2a_{1} - \frac{2 \, {\rm currel}}{2} - \frac{3}{\sqrt{2}}$.
19 Prove that $\tan 2a_{2} - \frac{2 \, {\rm currel}}{2}$.
11 Prove that $\tan 2a_{1} - \frac{2 \, {\rm currel}}{2} - \frac{3}{\sqrt{2}}$.
11 Prove that $\tan 2a_{2} - \frac{2 \, {\rm currel}}{2} - \frac{3}{\sqrt{2}}$.
12 Fr

DAE/IIA-2015/06 FIRST YEAR

DAE/IIA-2015/02

Note: Attempt any three (03) questions.

- **Q.2:** (a) Solve the equation $32 3x^2 = 10x$ by completing the square.
 - (b) Show that the roots of the equation $px^2 (p-q)x q = 0$ are rational.
- **Q.3:** (a) If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P. Show that $b = \frac{2ac}{a+c}$.
 - (b) The A.M. of two positive integral numbers exceeds their (positive) G.M. by 2 and their sum is 20. Find the numbers.
- **Q.4:** Find the term independent of x in the expansion of $\left(2x^2 + \frac{1}{x}\right)^9$.
- **Q.5:** (a) If $m = \tan \theta + \sin \theta$ and $n = \tan \theta \sin \theta$ then prove that $m^2 n^2 = 4\sqrt{mn}$
 - **(b)** If $\sin \alpha = \frac{4}{5}$ and $\sin \beta = \frac{12}{13}$, both α and β are in the 1st quadrant, find $\cos(\alpha + \beta)$
- **Q.6:** (a) How far is a man from the foot of tower 150 meters high, if the measure of the angle of elevation of its top as observed by him is $40^{\circ}30'$.

(b) In any $\triangle ABC$ by using the law of cosines $a = 7, c = 9, \beta = 112^{\circ}$, find b.

SUBJECTIVE

 $3 \times 8 = 24$

<u>2</u>

SECTION - II