Which will be the middle term/terms in the expansion of $\left(x+\frac{3}{2}\right)$ Convert $42^{\circ}36'12''$ into radian measure.

- Find the length of arc cut off on a circle of radius 3cm by a central angle of 2 radians. 11.
- Prove that $\cos 30^\circ \cos 60^\circ \sin 30^\circ \sin 60^\circ$. 12.

Expand $\left(\frac{x}{v} + \frac{y}{x}\right)^{*}$ by Binomial theorem.

Expand $(1+2x)^{-2}$ to three terms.

- If $\sin \theta = \frac{3}{8}$, and the terminal side of the angle lies in the second quadrant, find the remaining 13. trigonometric ratios of θ .
- Prove that $\tan(45^\circ + \theta)\tan(45^\circ \theta) = 1$ 14.
- Express $\sin x \cos 2x \sin 2x \cos x$ as single term. 15.
- If $\sin \theta = \frac{4}{5}$ and the terminal side of ' θ ' lies in 1st quadrant, find $\cos \frac{\theta}{2}$ 16.
- 17. Express $\sin 5\theta - \sin \theta$ as product.
- 18. Define laws of cosines.
- 19. In right triangle ABC, b = 6, α = 35°, γ = 90°, Find side 'a'.
- 20. The sides of a triangle are 16m, 20m and 33m respectively. Find its greatest angle.
- 21. In any triangle ABC in which b = 45, $\alpha = 52^{\circ}$, c = 34 find 'a'.
- 22. A minaret stands on the horizontal ground. A man on the ground, 100m from the minaret, find the angle of elevation of the top of the minaret to be 60°. Find its height.
- 23. Find the unit vector along the vector 4i - 3j - 5k
- if $\vec{a} = 2i + 3j + 4k$, $\vec{b} = i j + k$, find the magnitude of $3\vec{a} \vec{b}$. 24.
- $\label{eq:Find_states} \text{Find} \ \Big(\vec{a}+\vec{b}\Big).\Big(\vec{a}-\vec{b}\Big) \ \text{if} \ \vec{a}=2i+2j+3k \ , \ \ \vec{b}=2i-j+k \ .$ 25.
- Find a vector whose magnitude is 2 and is parallel to $\ 5i+3j+2k$. 26.
- Simplify the phasor $\frac{-9+j4}{8-i3}$ and write the result in Rectangular form. 27.

Time: 2:30 Hours

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

 $18 \times 2 = 36$

Marks: 60

DAE/IA-2017/08 FIRST YEAR MATH-123 APPLIED MATHEMATICS – I COMMON WITH BIO MEDICAL, COMPUTER, COMPUTER INFORMATION, ELECTRICAL, ELECTRONICS, FOOD, FOOD PROCESSING & PRESERVATION, INFORMATION & COMMUNICATION, INSTRUMENT, INSTRUMENTATION, MECHATRONICS AND **_ECOMMUNICATION TECHNOLOGIE**

PAPER 'A' (Subjective) SECTION - I

For what value of k the sum of the roots of $3x^2 + kx + 5 = 0$ may be equal to the product of roots.

Q.1: Write short answer to any Eighteen (18) questions: -

Solve the equation by factorization $3x^2 + 5x = 2$

Discuss the nature of the roots of the equation $x^2 + x + 1 = 0$

Form the quadratic equation whose roots are $3\sqrt{5}, -3\sqrt{5}$

Find the 7th term in the expansion of $\left(x - \frac{1}{x}\right)^9$.

Find the sum and the Product of the roots in the equation $x^2 - 9 = 0$

Note: Attempt any three (03) questions.

- Solve by using Quadratic formula $mx^2 + (1+m)x + 1 = 0$. Q.2:
- Find the term independent of x in the expansion of $\left(2x^2 + \frac{1}{x}\right)^9$. Q.3:
- Prove that $\left(\cos e c \theta \cot \theta\right)^2 = \frac{1 \cos \theta}{1 + \cos \theta}$. **Q.4**:
- If $\cos A = \frac{1}{5}$ and $\cos B = \frac{1}{2}$, where A and B be acute angles, find the value of $\cos(A B)$. Q.5:
- If $\vec{a}=2i-j+k~~and~~\vec{b}=3i+4j-k$, Find the sine of the angle between \vec{a} and \vec{b} and unit vector Q.6: perpendicular to each.

Fass

SUBJECTIVE

 $3 \times 8 = 24$