DAE/IA-2015/08 FIRST YEAR MATH-123 APPLIED MATHEMATICS – I COMMON WITH BIO MEDICAL, COMPUTER, COMPUTER INFORMATION, ELECTRICAL, ELECTRONICS, FOOD, FOOD PROCESSING & PRESERVATION, INFORMATION & COMMUNICATION, INSTRUMENT, INSTRUMENTATION, MECHATRONICS AND TELECOMMUNICATION TECHNOLOGIES.

PAPER 'A' (Subjective)

Time: 2:30 Hours

<u>SECTION - I</u>

Marks: 60

 $18 \times 2 = 36$

Q.1: Write short answer to any Eighteen (18) questions: -

- **1.** Solve by factorization the equation $x^2 + 7x + 8 = 0$.
- 2. Solve by the method of completing the square $x^2 6x + 8 = 0$.
- **3.** Find the nature of the roots of the equations $6x^2 = 7x + 5$.
- 4. Find the sum and the Product of the roots in the equation $2x^2 + 4 = 7x$.
- 5. Form the quadratic equation whose roots are $3\sqrt{5}$, $-3\sqrt{5}$.
- **6.** Write the 1st and last terms of $\left(\frac{x}{y} \frac{y}{x}\right)^4$.
- 7. Expand up to four terms. $(2 + x)^{-3}$. To Learn
- 8. Which term is the middle term/terms in the Binomial expansion of $(a + b)^n$, when n is odd.
- 9. Which term is the middle term/terms in the Binomial expansion of $(a + b)^n$, when n is even.
- **10.** Find the 6th term in the expansion of $(x + 3y)^{10}$.
- 11. What is the length of an arc of a circle of radius 5cm whose central angle is 140°?
- **12.** Verify that $\sin^2 \frac{\pi}{6} + \sin^2 \frac{\pi}{3} + \tan^2 \frac{\pi}{4} = 2$.

13. Prove that
$$\frac{1}{1+\sin\theta} + \frac{1}{1-\sin\theta} = 2\sec^2\theta$$
.

14. If
$$\sin \theta = \frac{7}{25}$$
, find $\cos \theta$, if ' θ ' is an acute angle

15. Without using the calculator, find the value of $\sin 15^\circ$.

16. Prove that
$$\frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta} = \tan \alpha + \tan \beta$$
.

- **17.** If $\cos \theta = \frac{-5}{13}$ and the terminal side of ' θ ' is in second quadrant, find the value of $\cos \frac{\theta}{2}$.
- **18.** Express the difference $\cos 12\theta \cos 4\theta$ as product.
- **19.** In right triangle ABC, $\gamma = 90^{\circ}$, a = 5, c = 13, then find ' α '.
- 20. The Shadow of a building is 220 meters when the measure of the angle of elevation of the sun is 35°.Find the height of the building.
- **21.** In any triangle ABC, by using the law of Cosines, if a = 13, b = 10, c = 17, find β .
- **22.** In any triangle ABC, if b = 82, $\beta = 57^{\circ}$, $\gamma = 78^{\circ}$, find a.
- **23.** Find real numbers x, y and z such that (x + 4)i + (y 5)j + (z 1)k = 0.
- **24.** if $\vec{a} = -i j k$, $\vec{b} = 2i + j$, find $\vec{a} \cdot \vec{b}$
- **25.** Find the area of parallelogram determined by the vectors $\vec{a} = i + 2j + 3k$ & $\vec{b} = -3i 2j + k$.
- **26.** Express -1 j in polar form.
- **27.** Express $10e^{j60^{\circ}}$ in a + jb form.

Available online @ <u>https://mathbaba.com</u>

SECTION - II

Note: Attempt any three (03) questions.

Q.2: (a) Solve $mx^2 + (1+m)x + 1 = 0$ by using Quadratic formula.

> Find the value of 'K' if sum of roots of $(2k-1)x^2 + (4k-1)x + (k+3) = 0$ is $\frac{5}{2}$. **(b)**

Q.3: (a) Find the coefficient of
$$x^{19}$$
 in $(2x^3 - 3x)^9$.

Find the coefficient of b^6 in the expansion of $\left(\frac{a^2}{2} + 2b^2\right)^{10}$. **(b)**

(b) Find the coefficient of
$$b^6$$
 in the expansion of $\left(\frac{a^2}{2} + 2b^2\right)^{10}$.
Q.4: (a) Prove that $\sin^2 \frac{\pi}{6} : \sin^2 \frac{\pi}{4} : \sin^2 \frac{\pi}{3} : \sin^2 \frac{\pi}{2} = 1 : 2 : 3 : 4$

(b) Prove that
$$(1 - \tan \theta)^2 + (1 - \cot \theta)^2 = (\sec \theta - \csc e \theta)^2$$
.

Q.5: (a) Show that
$$\cos(\alpha + \beta)\cos(\alpha - \beta) = \cos^2 \alpha - \sin^2 \beta$$
.

(b) In any triangle ABC, if
$$a = 211.3$$
, $\beta = 48^{\circ}16'$, $\gamma = 71^{\circ}38'$ find b.

Q.6: (a) If
$$\vec{a} = 3i - 2j + 5k$$
 & $\vec{b} = -2i - j + k$ Find $2\vec{a} - 3\vec{b}$ and also its unit vector.

(b) If the vectors 3i + j - k and $\lambda i - 4j + 4k$ are parallel, find value of λ .

4ics

Available online @ https://mathbaba.com