CH # 0110 By: Ali Nawaz Bajwa	MNTFORMULAE (M.Phil. (Math), M.Ed.) Mob #:+92(345)6743869 Government College of Technology, Sialkot.	
Chapter # 01	Exercise # 2.7	
Exercise # 1.1	Sum of ' ∞ ' terms of a Geometric Series	
Quadratic Formula	$\begin{bmatrix} a \\ 1 \end{bmatrix}$ if $ \mathbf{r} < 1$	
	$\mathbf{S}_{\infty} = \begin{cases} \frac{\mathbf{a}}{1-\mathbf{r}} & \text{if } \mathbf{r} < 1 \\ \frac{\mathbf{a}}{\mathbf{r}-1} & \text{if } \mathbf{r} > 1 \end{cases}$	
$\mathbf{x} = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4\mathbf{a}\mathbf{c}}}{2\mathbf{a}}$	$\left(\frac{1}{r-1}\right)$ if $ r > 1$	
Exercise # 1.2	Chapter # 03	
Discriminant	Exercise # 3.1	
$Disc = b^2 - 4ac$	Binomial Theorem	
Exercise # 1.3	1. $n! = n(n-1)(n-2) \dots 3.2.1$	
Sum & Product of the Roots	2. $\prod_{r=1}^{n} \binom{n}{r} = \frac{n!}{r!(n-r)!}$	
Sum of the Roots = $\alpha + \beta = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2} = -\frac{b}{a}$	3. Binomial Theorem	
Product of the Roots = $\alpha\beta = \frac{\text{constant term}}{\text{coefficient of } x^2} = \frac{c}{a}$	$(a+b)^{n} = {n \choose 0} a^{n}b^{o} + {n \choose 1} a^{n-1}b^{1} + {n \choose 2} a^{n-2}b^{2} + \dots + {n \choose n} a^{o}b^{n}$	
Exercise # 1.4	Exercise # 3.2	
Formation of Quadratic Equation	Binomial Series	
$\mathbf{x}^2 - \mathbf{S}\mathbf{x} + \mathbf{P} = 0$	$(1+b)^{n} = 1 + \frac{n}{1!}b + \frac{n(n-1)}{2!}b^{2} + \frac{n(n-1)(n-2)}{3!}b^{3} + \dots$	
Where $(S = Sum \text{ of the roots & } P = Product \text{ of the roots.})$	Chapter # 04	
Chapter # 02	How to resolve a Rational Fraction	
Exercise # 2.1	into Partial Fraction	
\mathbf{n}^{th} term or General term of A.P.	1. The degree of N(x) must be less than that of	
$\mathbf{a}_{n} = \mathbf{a} + (n-1)\mathbf{d}$	degree of D(x). if not, divide and work with the remainder theorem.	
Where $(a = 1^{st} term, d = common difference & n = No. of terms.)$	2. Multiply both sides by D(x).	
Exercise # 2.2	 Equate the coefficients of like powers of x. solve the resulting equations for the 	
Arithmetic Mean(AM)	coefficients.	
$A = \frac{a+b}{2}$	Chapter # 05	
Exercise # 2.3	Exercise # 5.1	
Sum of 'n' terms of an Arithmetic Series	Relation between ℓ and θ $\ell = r\theta$	
$\mathbf{S_n} = \frac{\mathbf{n}}{2} \left[2\mathbf{a}_1 + (\mathbf{n} - 1)\mathbf{d} \right]$	where Θ is in Radian, ℓ and r measured in terms of same unit.	
Exercise # 2.4	Exercise # 5.2	
\mathbf{n}^{th} term or General term of G.P.	Conversion of Degree ⇔ Radian	
$a_n = ar^{n-1}$	$1^{\circ} = \frac{\pi}{180} \operatorname{rad} \& \qquad \operatorname{1rad} = \frac{180^{\circ}}{\pi}$	
Where $(a = 1^{st} term, d = common Ratio & n = No. of terms.)$	$\frac{180}{\text{Exercise # 5.3}}$	
Exercise # 2.5	Signs of Trigonometric Functions	
Geometric Mean(GM)		
$G = \pm \sqrt{ab}$	2nd Quad ↑ 1st Quad	
Exercise # 2.6	SA	
Sum of 'n' terms of a Geometric Series	sin Θ B c s c Θ > D All +ve	
$S_{n} = \begin{cases} \frac{a(1-r^{n})}{1-r} & \text{if} & r < 1\\ \frac{a(r^{n}-1)}{r-1} & \text{if} & r > 1 \end{cases}$	$\tan \Theta \mathbf{S} \cot \Theta > \mathbf{D} \cos \Theta \mathbf{S} \sec \Theta > \mathbf{D}$	
$\mathbf{S}_{n} = \begin{cases} 1 & 1 \\ \mathbf{a} \left(\mathbf{r}^{n} - 1 \right) \end{cases}$	ТС	
$\left(\frac{1}{r-1}, \text{if} r > 1\right)$	3rd Quad	

Value	es of	Trigond	ometri	c Funct	tions	Sum & Difference \Rightarrow Product
θ	0°	30°	45°	60°	90°	1. $\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
\sin	0	$\frac{1}{2}$	$rac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
	1	$\frac{\frac{2}{\sqrt{3}}}{2}$	$\frac{\frac{2}{\sqrt{2}}}{\frac{2}{2}}$	$\frac{2}{\frac{1}{2}}$	0	2. $\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$
cos		$\frac{2}{1}$	2	2		3. $\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Ø	4. $\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$
Exercise # 5.3						$= \frac{1}{2} \sin\left(\frac{1}{2}\right) \sin\left(\frac{1}{2}\right)$
Fundamental Identities						Chapter # 07
1. $\sin^2 \theta + \cos^2 \theta = 1$ or $\begin{cases} \sin^2 \theta = 1 - \cos^2 \theta \\ \cos^2 \theta = 1 - \sin^2 \theta \end{cases}$						Exercise # 7.1 , 7.2
$\begin{bmatrix} \cos^2 \theta = 1 - \sin^2 \theta \\ \tan^2 \theta = \sec^2 \theta - 1 \end{bmatrix}$						Right Angle Triangle
2. 1+ta	$n^2 \theta = s$	$\sec^2 \theta$ or	•	$\theta - \tan^2$		1. $\sin \alpha = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{\alpha}{c} = \frac{3\sqrt{c}}{\sqrt{c}} (s^{c})$
$3.1\pm \alpha$	$h^2 A - a$	$\cos^2 \theta$	$\int \cot^2$	$\theta = \cos \theta$	$ec^2\theta-1$	2. $\cos \alpha = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{b}{c} = \frac{\partial \mathcal{L}}{\partial \mathcal{I}}$
			[cos	$ec^2 \theta - cc$		
4. tan€	$=\frac{\sin\theta}{\cos\theta}$) } &	5.	$\cot \theta =$	$\frac{\cos\theta}{\sin\theta}$	3. $\tan \alpha = \frac{\text{Perpendicular}}{\text{Base}} = \frac{a}{b} = \frac{a}{b}$
						4. Sum of angles of the triangle is 180 β
Jicose	_	$\frac{1}{n\theta}$ &			cosθ	$\frac{\alpha + \beta + \gamma = 180^{\circ}}{5}$ The Pythagoras Theorem A α $\gamma = 0$
Chapter # 06						5. The Pythagoras Theorem :A α $\gamma = C$ $(Base)^2 + (Perpendicular)^2 = (Hypotenus)^2$
Exercise # 6.1 Fundamental Laws of Trigonometry					motor	
		$= \sin \alpha$		-		Exercise # 7.3, 7.4, 7.5 Oblique Triangles
		$= \sin \alpha$				1. Sum of angles of a triangle : $\alpha + \beta + \gamma = 180^{\circ}$
	` '					2. The Law of Sines : $\left\{\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}\right\}$
3. $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ 4. $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$						$\begin{bmatrix} \sin \alpha & \sin \beta & \sin \gamma \end{bmatrix}$ [i. $a^2 = b^2 + c^2 - 2bc \cos \alpha$]
	, ,				r	3. The Law of cosines : $\{$ ii. $\mathbf{b}^2 = \mathbf{c}^2 + \mathbf{a}^2 - 2\mathbf{c}\mathbf{a}\cos\beta \}$
5. tan	$(\alpha + \beta)$	$=\frac{\tan \theta}{1-\tan \theta}$	inαtai	nβ		$\begin{bmatrix} \mathbf{iii.} & \mathbf{c}^2 = \mathbf{a}^2 + \mathbf{b}^2 - 2\mathbf{a}\mathbf{b}\cos\gamma \end{bmatrix}$
6. tan	$(\alpha - \beta)$	$=\frac{\tan \theta}{1+\tan \theta}$	α–tan	β		Chapter # 08
				-		Exercise # 8.1 1. Magnitude of a vector $\vec{r} = xi + yj + zk$ is
г		(ercis			s	1. Magnitude of a vector $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ is $ \vec{r} = \sqrt{x^2 + y^2 + z^2}$
Double Angles Identities 1. $\sin 2\theta = 2\sin\theta\cos\theta$						··· , · · , · · , · · , · · , · · , ·
$\int \cos^2 \theta - \sin^2 \theta$						2. Units vector of a vector $\vec{a} = \hat{a} = \frac{\hat{a}}{ \vec{a} }$
$2.\cos 2\theta = \left\{ 2\cos^2 \theta - 1 \\ 1 - 2\sin^2 \theta \right\}$						3. Direction Cosines of a vector $\vec{r} = xi + yj + zk$ are x y z
$\left(1-2\sin^2\theta\right)$						$rac{1}{\sqrt{x^2+y^2+z^2}},rac{y}{\sqrt{x^2+y^2+z^2}},rac{z}{\sqrt{x^2+y^2+z^2}}$
$3.\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$						Exercise # 8.2
Triple Angles Identities 1. $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$					S	1.Cosine of the angle between $\vec{a} \ \vec{b} = \cos \theta = \frac{\vec{a} \cdot \vec{b}}{ \vec{a} \vec{b} }$
$3 \tan \theta - \tan^3 \theta$					2. Sine of the angle between $\vec{a} \ \vec{b} = \sin \theta = \frac{\left \vec{a} \times \vec{b} \right }{\left \vec{a} \right \left \vec{b} \right }$	
						→
Exercise # 6.3 Product ⇒ Sum & Difference					Ce	3.Units vector perpendicular to both $\vec{a} \ \vec{b} = \hat{u} = \frac{\vec{a} \times \vec{b}}{ \vec{a} \times \vec{b} }$
1. $2\sin\alpha\cos\beta = \sin(\alpha+\beta) + \sin(\alpha-\beta)$						4. Area of the Parallelogram = $ \vec{a} \times \vec{b} $
2. $2\cos\alpha\sin\beta = \sin(\alpha+\beta) + \sin(\alpha-\beta)$ 2. $2\cos\alpha\sin\beta = \sin(\alpha+\beta) - \sin(\alpha-\beta)$						5. Two vectors $\vec{a} \in \vec{b}$ are perpendicular iff $\vec{a} \cdot \vec{b} = 0$
3. $2\cos\alpha\cos\beta = \cos(\alpha+\beta) + \cos(\alpha-\beta)$						6. Two vectors $\vec{a} \ \vec{b}$ are parallel iff $\vec{a} \times \vec{b} = 0$
4. $-2\sin\alpha\sin\beta = \cos(\alpha+\beta) + \cos(\alpha-\beta)$						7. Projection of \vec{a} along $\vec{b} = \frac{\vec{a} \cdot b}{ \vec{b} }$
			、 · /	V.	• /	

Chapter # 09

Exercise # 9.1 Matrices

- Two matrices A and B can be added/Subtracted if A and B have same order.
 Two matrices A and B are said to be conformable
- Two matrices A and B are said to be conformable for the product AB if 'The number of columns of A = The number of rows of B'.
- Two matrices A and B are commute if and only if AB = BA

Exercise # 9.2 Determinant

- 1. If a square matrix has two rows (or columns) are identical, then $|{\bf A}|=0$
- 2. If all the entries of a row (or column) of a square matrix are zero then, $\left|A\right|=0$
- 3. For a square matrix A, $|\mathbf{A}| = |\mathbf{A}^t|$.

Exercise # 9.3

Special MAtrices

- A matrix A is singular if |A| = 0.
 A matrix A is non-singular if |A| ≠ 0
- A square matrix A is called symmetric if $A^t = A$
- A square matrix A is called skew symmetric matrix if $A^{t} = -A$
- If A is a non-singular matrix, then $A^{-1} = \frac{adj(A)}{|A|}$

Chapter # 10 Area of Triangle

When all sides are equal (Equilateral Triangle)

Area of triangle =
$$\frac{\sqrt{3}}{4}a^2$$

When two sides and their included angle are given

Area of triangle =
$$\frac{1}{2}ab\sin heta$$

When base and height are given

3. Area of triangle =
$$\frac{1}{2} \times base \times height$$

Area of triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Chapter # 11

Area of Quadrilateral

1. Area of square = a^2

2.

4.

5.

6.

2. Area of Rhombus =
$$\begin{cases} \frac{d_1 \times d_2}{2} \\ a^2 \sin \theta \end{cases}$$

3. Area of Rectangle = base × height = b × h
(
$$absin\theta$$

4. Area of Parallelogram =
$$\begin{cases} base \times Altitude \\ base \times Altitude \end{cases}$$

Area of Trapezoid =
$$\frac{\text{sum of Parallel sides}}{2} \times \text{height}$$

Area of Quadrilateral = $\sqrt{(s-a)(s-b)(s-c)(s-d)}$

Chapter # 12

Area of Polygons

. Interior angle =
$$\frac{2n-4}{\times 90^{\circ}}$$

1

3.

4.

1.

2.

2. Area =
$$\frac{na^2}{4} \cot\left(\frac{180^\circ}{n}\right)$$

When radius of the inscribed cicle 'r' is given

$$Area = nr^2 \tan\left(\frac{180^\circ}{n}\right)$$

When radius of the circumscribed cicle ' ${\bf R}$ ' is given

(360°)

Area =
$$\frac{11}{2} \sin\left(\frac{333}{n}\right)$$

Chapter # 13

 nR^2

Area of Circle = $A = \pi r^2$ Circumference of Circle = $C = 2\pi r$

3. Area of annulus
$$(\operatorname{Ring}) = \pi (\mathbf{R}^2 - \mathbf{r}^2)$$

4. Area of Sector =
$$\begin{cases} \frac{1}{2}r^2\theta \\ \frac{1}{2}\ell r \end{cases}$$

5. Area of
$$\begin{cases} \text{minor Segment} = \frac{1}{2}r^{2}(\theta - \sin\theta) \\ \text{major Segment} = \frac{1}{2}r^{2}(2\pi - \theta + \sin\theta) \end{cases}$$

6. Area of Segment =
$$\frac{h}{6c} [3h^2 + 4c^2]$$

7. Length of chord =
$$C = \sqrt{dh - h^2}$$

Chapter # 14

Area of Irregular Plane Figures

 $\frac{Simpson's Rule}{Area = \frac{S}{3}[A+2D+4E]} \begin{bmatrix} S = Width \text{ of each strip} \\ A = Sum \text{ of first } S \text{ last ordinates} \\ D = Sum \text{ of odd ordinates} \\ E = Sum \text{ of even ordinates} \end{bmatrix}$

Chapter # 15

- Mensuration of Solid1. Lateral surface area (L.S.A.) = Perimeter of base × Height2. Total surface area = L.S.A. + Areas of the bases
- 2. Total surface area = L.S.A. + Areas of the b 3. Volume of Prism = Area of base × Height
- 4. Length of diagonal = $\sqrt{\ell^2 + b^2 + h^2}$

Chapter # 16

Mensuration of Cylinder

Cylinder $\begin{cases} 1. \text{ Lateral surface area (L.S.A.)} = 2\pi rh \\ 2. \text{ Total surface area} = 2\pi rh + 2\pi r^2 \\ 3. \text{ Volume} = \pi r^2 h \\ 4. \text{ Lateral surface area} = 2\pi (R + r)h \end{cases}$

Hollow Cylinder
$$\begin{cases} 5. \text{ T.S.A.} = 2\pi (\mathbf{R} + \mathbf{r})\mathbf{h} + 2\pi (\mathbf{R}^2 - \mathbf{r}^2) \\ 6. \text{ Volume} = \pi \mathbf{r}^2 \mathbf{h} \end{cases}$$

	Chapter # 17							
	Exercise # 17.1							
	Mensuration of Pyramid							
1.	Volume of Pyramid = $\frac{1}{3}$ × area of base × height							
2.	Leteral Surface area $ig({ m L.S.A} ig) = rac{1}{2} imes$ Perimeter of the base $ imes$ slant height							
3.	Total Surface area $(T.S.A) = L.S.A +$ area of base							
Exercise # 17.2								
Frustum of Pyramid								
1.	Volume of the frustum of a Pyramid = $\frac{h}{3} \times \left[A_1 + A_2 + \sqrt{A_1 A_2}\right]$							
	(where \mathbf{A}_{1} is the base & \mathbf{A}_{2} is the area of top)							
2.	Leteral Surface area of the frustum of a Pyramid $ig(ext{L.S.A.}ig)$							
	$=rac{1}{2} imes$ sum of perimeter of the base and top $ imes$ slant height							
3.	Total Surface area = $L.S.A$ + areas of base and top							
	Chapter # 18							
	Exercise # 18.1							
	Mensuration of Cone							
1.	Volume of Cone = $\frac{1}{3}\pi r^2 h$ cu.unit							
2.	Lateral surface area of Cone = $\pi r \ell$ sq.unit							
3.	Total surface area of Cone = $\pi \mathbf{r} ig(\ell + \mathbf{r} ig)$ sq.unit							
Exercise # 18.2								
	Frustum of Cone πb σ σ σ σ							
1.	Volume of the frustum of a Cone = $\frac{\pi h}{3} \times [R^2 + r^2 + Rr]$ cu.unit							
	(where R is the radius of the base & r is the radius of the top)							
2.	Leteral Surface area(L.S.A) of Cone = $\pi(\mathbf{R} + \mathbf{r})\ell$ sq.unit							
3.	Total Surface area $ig({ m T.S.A}ig)$ of Cone = $\piig({ m R}+{ m r}ig)\ell+\pi{ m R}^2+\pi{ m r}^2$ sq.unit							
	Chapter # 19							
	Exercise # 19.1							
	Mensuration of Sphere							
1.	Volume of the Sphere = $V = \frac{4}{3}\pi r^3$ or $\frac{\pi}{6}d^3$ cu.unit							
	Surface area of the sphere = $4\pi r^2$ or πd^2 sq.unit							
3.	Volume of the Shell = $\frac{4}{3}\pi (R^3 - r^3)$ or $\frac{\pi}{6} (D^3 - d^3)$ cu.unit							
	Exercise # 19.2							
	Zone (Frustum) of Sphere							
1.	Volume of the Zone = $\mathbf{V}=rac{\pi\mathbf{h}}{6}ig(\mathbf{h}^2+3\mathbf{r}_1^2+3\mathbf{r}_2^2ig)$ cu.unit							
2.	Total surface area of the Zone = $2\pi rh + \pi r_1^2 + \pi r_2^2$ sq.unit							
	Surface area of the sphere = $2\pi rh$ sq.unit							
4.	Volume of the segment of sphere = ${f V}={\pi h\over 6}ig({f h}^2+3{f r}_1^2ig)$ cu.unit							